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Abstract U–Pb ages, in conjunction with oxygen isotope

and hafnium isotope geochemistry of zircons from granitic

and siliciclastic crustal xenoliths from Cenozoic alkali

basalts on Zhokhov Island (De Long Archipelago, Russian

Arctic), provide new insights about the island’s subsurface

geology. Zircons from granitic gneiss xenoliths yield
206Pb/238U ages ranging from 600 to 660 Ma, similar to

protolith ages of granite intrusions and orthogneisses in

Protouralian–Timanian magmatic basement of the northern

Urals as well as to rocks that form the basement of Arctic

Chukotka and Wrangel Island, thus suggesting continuity

between these three regions. Depleted mantle-like Hf and

O isotopic signatures in the dated zircons suggest juvenile

crust that originally formed in the Neoproterozoic and was

later reworked during the Paleozoic and Mesozoic. Sand-

stone xenoliths contain detrital zircon (DZ) populations

that establish their depositional age as younger than Per-

mian and reveal similarities to DZ populations of Permian

and Triassic strata of Taimyr and Chukotka.

Keywords Crustal xenoliths � Zircon geochronology � Hf

isotopes � De Long � Circum-Arctic tectonics

Introduction and previous work

The De Long archipelago in the East Siberian Sea consists

of several small islands (Zhokov, Jeannette, Henrietta,

Bennett, and Vil’kitskiy) that are the northeastern most

landmasses of the New Siberian Islands and have been

included within the northwestern edge of the composite

Arctic Alaska–Chukotka crustal terrane (AACH) (e.g., [3]

(Fig. 1). Determining the age and composition of basement

of the AACH terrane has been a fundamental challenge in

understanding the plate tectonic history of this vast,

remote, and largely submerged crustal block, and thus

bedrock exposures in the De Long archipelago provide

invaluable data for addressing this problem. Although the

oldest metamorphic rocks from AACH were shown as

Archean on Russian geologic maps until the early 1990s,

sparse U–Pb geochronology data from outcrops on Wran-

gel Island, Chukotka Peninsula, and Seward Peninsula

indicate AACH crust is significantly younger, generally

consisting of Meso- and Neoproterozoic basement covered

by Paleozoic and Mesozoic strata [2, 6, 9, 17]. The first-

reported U–Pb geochronology studies of rocks of the De

Long archipelago have suggested a correlation with the

Timanides of Baltica (Polar Urals) as well as the rest of the

AACH on the basis of late Neoproterozoic age results from

igneous samples [4, 8].

Although Zhokhov Island (152o420E, 76�080N; Fig. 1)

within the De Long archipelago is nearly entirely covered

by late Neogene to Quaternary alkali basalts, the basalts

entrain an assortment of crustal and mantle xenoliths [19,

20]. We collected xenoliths of granitic gneiss and
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sandstone (Fig. 2) from these basalts to gain information

about the composition and age of pre-volcanic rock units in

the subsurface of Zhokhov Island. The most

comprehensive petrological and geochemical study of the

alkali basalts and mantle xenoliths of Zhokhov Island was

carried out by [20], but that study, which focused primarily
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on mantle-derived material, only described one crustal

xenolith (a Cretaceous dolerite). The age of eruption of the

basalts has been reported as between 1.2 and 10 Ma, and

more precise 40Ar/39Ar dating of a single sample has

yielded an age of 1.2 ± 0.2 Ma [11]. Although not the

subject of this paper, the timing of basaltic volcanism on

Zhokhov Island is constrained by new K–Ar results as

active during the period 1.4 ± 0.1 to 3.6 ± 0.6 Ma (Aki-

nin et al. in prep.), which overlaps the Plio-Pleistocene

timing of glaciations documented in the Arctic [7]. Thus,

the potential for volcanic flows to envelop and transport

glacial sediments at the surface cannot be ruled out.

However, given that 90–95 % of the xenoliths observed in

basalts on Zhokhov are derived from the mantle, it is likely

that at least some of the crustal xenoliths in the volcanic

strata were incorporated into magmas in the subsurface.

Recent studies [4, 8] present new U–Pb geochronology

of acid rocks hosted by Cenozoic basalt on Zhokhov

yielding concordant ages of 568 ± 4 and 602 ± 2 Ma [8]

and 533 ± 1, 578 ± 2 Ma, and a multimodal result of

638 ± 5 and 663 ± 7 Ma [4], and thus four of five samples

yield ages between ca. 530–600 Ma. However, it is

uncertain whether these B600 Ma samples were trans-

ported in magmas that passed through the crust or were

simply entrained by basalt flows as they flowed over the

land surface. Given the history of glaciation in the region

[7], boulders and cobbles in basalt flows may have been

glacially transported vast distances across the Pleistocene

Arctic landscape onto Zhokov Island before being incor-

porated into the basalts, and are thus potentially problem-

atic in terms of being representative of bedrock geology.

Here we present U–Pb, O and Lu–Hf isotopic results from

zircons from granitic gneiss and sandstone xenoliths that

we believe were picked up on the way to the surface and

offer some petrologic and paleogeographic interpretations

of these data in context of the geology of the AACH crustal

block.

Data collection and analytical methods

Twenty-nine samples of crustal xenoliths were collected

from different parts of the island. From greatest to least

abundant, these consist of gray quartz-feldspar-bearing

sandstones, granitic gneisses, marble, plagioclase-amphi-

bole-bearing pegmatites, and diorites. Importantly, we

collected crustal xenoliths only within craggy outcrops of

basalts at multiple localities across the island (Fig. 2),

discriminating them from the possible boulder-size glacial

erratics reported upon by Lorenz [12] and Ershova et al.

[4]. The diameter of most crustal xenoliths we observed

ranges from 2 to 5 cm, with very rare fragments up to

10–15 cm across. We note that the small volumes of the

xenolith material collected yielded less zircons in the

mineral separates relative to routine geochronology work

in which sample volume is not an issue. All crustal xeno-

liths are classified as fragments of upper crustal rocks

likely derived from shallow depths of the underlying

basement. No obvious lower crustal xenoliths such as mafic

granulites or gabbros as described in Akinin et al. [1] were

identified.

Using conventional separation techniques, zircon was

separated from eight samples of crustal xenoliths, and 63

grains were dated via Secondary Ion Mass Spectrometry

(SIMS) on the Sensitive High Resolution Ion MicroProbe-

Reverse Geometry (SHRIMP-RG) at the Stanford USGS

Micro Analysis Center. Subsequently, 23 of the dated zir-

cons from five samples were selected for oxygen and

hafnium isotopic measurements, and analyzed for oxygen

at UCLA using SIMS (Cameca IMS-1270) and for hafnium

at WSU Geoanalytical Lab using laser ablation-inductively

coupled plasma-mass spectrometry (LA-ICP-MS). Stan-

dard methodologies of the respective laboratories were

used during analyses, which were carried out under the

supervision of respective laboratory personnel. Due to the

limited zircon yields from individual samples, sandstone

xenolith zircon populations were too small for standard

detrital zircon geochronology methods (i.e., analyzing 100

grains per sample), but are included here as preliminary

data.

Results and interpretations

Zircon U–Pb geochronology data from the samples are

shown in Table 1. Oxygen and hafnium isotope data are

shown in Tables 2 and 3, respectively. The following

abbreviations/notations are used in the presentation of the

results: MSWD, mean square of weighted deviates; d18O

(VSMOW), 18O/16O of unknown relative to Vienna Stan-

dard Mean Ocean Water measured per mil [21]; eHf(i),
176Hf/177Hf of unknown relative to chondritic uniform

reservoir at the time of zircon crystallization measured in

epsilon units [22].

Two xenolith samples are fine- to medium-grained

plagiogranitic gneisses (samples ZH38 and ZH13). They

have weakly foliated texture, are composed of quartz,

plagioclase (An27–32), and potassium feldspar, but do not

have mica in thin section. SHRIMP-RG zircon U–Pb

crystallization ages (n = 32) from these plagiogranite

xenoliths range from 600 to 660 Ma. Three zircons have

older cores with 207Pb/206Pb ages ranging from 1.47 to

1.88 Ga. Five zircons of Neoproterozoic age have con-

cordant 206Pb/238U and 207Pb/206Pb ages (discordance

(D)\ 5 %, Table 1) with 206Pb/238U ages ranging from ca.

630–650 Ma. All Neoproterozoic zircon results from this

sample combined yield a 204Pb-corrected 206Pb/238
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Table 2 SIMS oxygen isotopic composition of zircons from granitic gneiss crustal xenolith (sample ZH38) of Zhokhov Island

No spot 16O 16O err 18O 18O err 18O/16O err d18O meas % err d18O VSMOW % err

1 2.99E?09 4.37E?05 6.01E?06 8.92E?02 2.01E–03 9.12E–08 3.82 0.05 3.52 0.22

2 3.00E?09 7.64E?05 6.05E?06 1.55E?03 2.01E–03 1.25E–07 5.26 0.06 4.84 0.30

3 2.93E?09 8.97E?05 5.90E?06 1.80E?03 2.01E–03 1.25E–07 3.47 0.06 3.19 0.20

4 2.99E?09 7.65E?05 6.02E?06 1.43E?03 2.01E–03 1.72E–07 3.79 0.09 3.49 0.23

5 3.00E?09 2.60E?06 6.03E?06 5.23E?03 2.01E–03 1.13E–07 4.19 0.06 3.86 0.24

6 2.97E?09 3.59E?05 5.97E?06 8.32E?02 2.01E–03 1.42E–07 2.67 0.07 2.46 0.16

7 2.96E?09 1.08E?06 5.96E?06 2.19E?03 2.01E–03 1.24E–07 4.00 0.06 3.68 0.23

8 2.98E?09 5.67E?05 5.99E?06 1.16E?03 2.01E–03 8.56E–08 3.38 0.04 3.11 0.19

err error as 2 sigma, error in standard R33 = 0.06 %; correction factor using standard 91500 = 1.024844

Table 3 LA-ICPMS Hf isotope results from zircons separated from crustal xenoliths of Zhokhov Island

Sample_spot 176Hf/177Hf(m)
176Hf/177Hf (cor) ±2r 206Pb/238U age 176Hf/177Hf(i) eHf0 eHfi ±2r

Sample ZH38 (plagiogranitic gneiss, 152.754o E; 76.1501o N)

ZH38_8 0.282667 0.282709 5.1E–05 629 0.282668 -4.2 9.9 1.8

ZH38_9 0.282721 0.282763 2.6E–05 637 0.282738 -2.3 12.6 0.9

ZH38_5 0.282697 0.282739 2.3E–05 662 0.282724 -3.1 12.6 0.8

ZH38_4 0.282735 0.282777 2.8E–05 631 0.282741 -1.8 12.5 1.0

ZH38_3 0.282712 0.282754 3.0E–05 622 0.282730 -2.6 12.0 1.1

ZH38_1 0.282716 0.282758 2.5E–05 633 0.282739 -2.4 12.5 0.9

Sample ZH13 (plagiogranitic gneiss, 152.8209o E; 76.0917o N)

ZH13_7 0.282634 0.282676 4.1E–05 634 0.282653 -5.3 9.5 1.5

ZH13_6 0.282618 0.282660 2.7E–05 724 0.282637 -5.9 11.0 1.0

ZH13_2 0.281575 0.281617 4.1E–05 1880 0.281585 -42.8 0.0 1.5

ZH13_1 0.282658 0.282700 3.0E–05 613 0.282687 -4.5 10.2 1.1

Sample ZH1 (sandstone, 152.8469o E; 76.1496o N)

ZH1_1 0.282225 0.282267 5.7E–05 931 0.282257 -19.8 2.2 2.0

ZH1_4 0.281284 0.281326 4.8E–05 635 0.281319 -53.1 -37.7 1.7

ZH1_6 0.282561 0.282603 3.4E–05 250 0.282598 -7.9 -1.1 1.2

ZH1_7 0.281887 0.281929 4.1E–05 1511 0.281916 -31.8 3.3 1.5

Sample ZH25 (sandstone, 152.8125o E; 76.1596o N)

ZH25_10 0.282621 0.282663 3.4E–05 418 0.282652 -5.8 4.6 1.2

ZH25_9 0.281787 0.281829 4.4E–05 1431 0.281803 -35.3 -2.6 1.6

ZH25_8 0.282623 0.282665 4.0E–05 303 0.282661 -5.7 2.4 1.4

ZH25_5 0.282494 0.282536 4.0E–05 638 0.282530 -10.3 5.2 1.4

ZH25_6 0.282582 0.282624 3.9E–05 314 0.282618 -7.2 1.1 1.4

ZH25_3 0.282380 0.282422 3.1E–05 275 0.282416 -14.3 -6.9 1.1

ZH25_2 0.282442 0.282484 3.3E–05 303 0.282482 -12.1 -4.0 1.2

ZH25_1 0.282365 0.282407 3.9E–05 161 0.282403 -14.9 -9.9 1.4

Sample ZH29 (sandstone, 152.5606o E; 76.151o N)

ZH29_1 0.282593 0.282635 3.5E–05 459 0.282621 -6.8 4.4 1.2

ZH29_9 0.282086 0.282128 3.7E–05 1010 0.282120 -24.7 -0.9 1.3

ZH29_8 0.282192 0.282234 2.9E–05 1169 0.282218 -21.0 6.2 1.0

ZH29_7 0.282047 0.282089 4.8E–05 1163 0.282079 -26.1 1.1 1.7

ZH29_4 0.282100 0.282142 2.6E–05 1205 0.282126 -24.2 3.7 0.9

176 Hf/177Hf(m) measured ratio, 176Hf/177Hf(corr) corrected on standard ratio, 176Hf/177Hf(i) initial ratio in accordance with U–Pb age
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U-weighted mean age of 626 ± 9 Ma (2r, MSWD = 3.4,

N = 23; Fig. 3). Three concordant (D\ 3 %) zircons from

sample ZH13 yield 204Pb-corrected 206Pb/238U-weighted

mean age of 638 ± 11 Ma (2r, MSWD = 1.0), within

error of the ZH38 result (Fig. 3). The high MSWD value in

ZH38 casts significant uncertainty on interpreting the mean

age as reflecting a single magmatic event, although the

range of ages from 600 to 660 Ma likely reflects the

timespan of magmatism and associated high temperature

metamorphism in the crust. However, zircons from xeno-

liths theoretically may have experienced lead loss while

they were transported by hot basaltic melt, and large dis-

persion of individual U–Pb ages indicates this may be a

possibility (Fig. 3). However, seven zircons yield near

concordant 206Pb/238U and 207Pb/206Pb ages (discor-

dance\ 5 %, Table 1) and discordant results do not

exhibit a coherent trend toward a Pliocene lower intercept

age on concordia (the age of the enclosing basalt).

The oxygen isotopic composition of dated zircons from

sample ZH38 shows a range of d18O (VSMOW) from 4.8

to 2.5 % (weighted mean 3.3 ± 0.5 %) (Table 2) attain-

ing mantle values when zircon values are recalculated to

whole rocks data [21]. Hf isotopic composition of late

Neoproterozoic zircons is similar to modeled depleted

mantle values with eHf(i) ranges from ?9.9 to ?12.6, and
176Hf/177Hf(i) from 0.282668 to 0.282741 (Table 3, Fig. 5).

These results yield Lu–Hf model ages of 740–880 Ma for

extraction from depleted mantle, assuming average crustal

value of 176Lu/177Hf = 0.0093 [22].

Three sandstone xenoliths (ZH1, ZH25, ZH29) that we

studied exhibit varied lithology and detrital zircon spectra,

suggesting not all sandstone xenoliths were derived from

the same stratigraphic interval. Sample ZH29 is a grayish

brown fine-grained subangular, slightly feldspathic quartz-

rich sandstone cemented by small amount of clay matrix

containing small fragments of partially melted mica and

potassium feldspar. Eight zircon grains from this sandstone

yield 207Pb/206Pb ages of 1.0–1.6 Ga, and one grain yielded

a 206Pb/238U age of 460 ± 14 Ma. Hafnium isotopic

composition of six dated zircons have a broad range (eHf(i)

from -0.9 ± 1.3 to ?6.2 ± 1; Table 3; Fig. 5).

Samples ZH1 and ZH25 are light gray, fine-grained,

subangular, weakly cemented sandstones which are par-

tially melted near the contact with the host lava. They are

composed of quartz (*50–60 %), feldspar (*10–20 %),

and partially melted clay matrix. Seven detrital zircon

grains from sample ZH1 yield ages that range from

Proterozoic to Permian (five grains ages are Carboniferous

to Permian), suggesting a maximum depositional age of

latest Paleozoic or younger (Fig. 4; Table 1). Ten detrital

zircon grains from sample ZH25 yield results similar to the

ZH1 age distribution pattern, with predominantly
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Carboniferous to Permian ages. The youngest zircon from

ZH25 yields a 206Pb/238U age of 216 ± 2 Ma, whereas one

grain from ZH1 exhibits concordant 206Pb/238U and
208Pb/232Th ages around 160 Ma. Given that only one

Mesozoic age result was obtained from each sample, it is

difficult to substantiate whether these zircons reflect

derivation from a Mesozoic (or younger) sedimentary rocks

or whether they are simply spurious age results. The

ubiquity of Late Jurassic and Early Cretaceous age sand-

stones across the AACM which contain Triassic and

Jurassic age zircons (e.g., [14]) suggests there could be a

geologic analog to the sandstones represented by these

small xenoliths, although more data are clearly needed to

evaluate any potential relationships. eHf(i) in eight dated

Phanerozoic zircons from samples ZH1 and ZH25 ranges

broadly from ?4.6 to -9.9 ± 1.4, and trend away from

juvenile depleted magmatic zircons (ZH38 and 13) when

plotted as eHf(i) versus time (Table 3; Fig. 5).

In summary, zircons from granitic gneiss xenoliths are

Neoproterozoic with U–Pb protolith ages ca. 660–600 Ma,

and have depleted mantle-like Hf isotopic signatures and

yield near (slightly lighter than) mantle 18O/16O isotope

ratios in zircon. Initial Hf isotopic compositions of dated

zircons from magmatic and sedimentary rocks are consis-

tent with formation/addition of juvenile crust in Neopro-

terozoic time followed by reworking of the crust (without

additional juvenile input) during Phanerozoic time. U–Pb

ages and Hf model ages obtained here are similar to

widespread pre-Uralian–Timanian magmatic arc basement

exposed west of the Ural Mountains [10, 15, 18] and are

similar to protolith ages for granite intrusions and orthog-

neiss dated along the Arctic coast of Chukotka [2, 6].

Implications

The limited number of detrital zircons dated from the small

sandstone xenoliths and the limited stratigraphic knowl-

edge about the subsurface of Zhokhov Island are prob-

lematic in terms of using this data for meaningful

paleogeographic interpretations. However, the robust and

rapidly growing database of circum-Arctic detrital zircon

spectra (e.g., [4, 13–16, 18]) provides a framework for a

preliminary comparison of the data reported here to that

elsewhere using histograms and probability density plots.

Figure 4 illustrates that the zircons from Zhokhov sand-

stone xenoliths predominantly yield Carboniferous to Tri-

assic age results, similar to Mesozoic sandstones of the

Russian Arctic [13, 14, 16].

Some useful comparisons can be made between these

new xenolith zircon age data and recently published

geochronology from other De Long archipelago samples.

Zircons from an quartz-rich sandstone boulder erratic on

Zhokhov ([4, 12] and sandstone Unit B from nearby

Henrietta Island [4]) exhibit late Neoproterozoic age

peaks ca. 590–660 Ma, similar to the age of Zhokhov

Island Neoproterozoic granitoid xenoliths and the spectra

of detrital zircon ages in some of our sandstone xenoliths

(Fig. 4). By contrast, a second quartz-rich sandstone

boulder erratic from Zhokhov Island yielded a younger

ca. 550 Ma peak, similar in age to the age of granitic
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boulder erratics collected in the same locality by Lorenz

[12]. In comparison, ca. 550 Ma zircon ages are rare in

the granitic and sandstone xenoliths analyzed in this

study. In aggregate, the detrital zircon populations in

sandstone boulder erratics on Zhokhov and Henrietta

Islands yield ages that are characteristic of pre-Uralian–

Timanian magmatic rocks and clastic strata weathered

from them. The zircon populations in sandstone xenoliths

we present here are clearly derived from younger rocks

or strata.

Our basement geochronology suggests an age affinity

between Zhokhov Island and the basement of Arctida

[23] that was accreted to Baltica in the Timanian oro-

geny (e.g., [5, 10]. Our data for the cover sequences are

compatible with basement ages—the sediments have

detrital signatures similar to Permian and Triassic

sequences of the Urals, West-Siberia Basin, and Taimyr

region. These sedimentary sequences would postdate the

Uralian orogeny that brought Siberia to Baltica and/or

Timanides [4, 18]. They also provide enhanced ties with

strata this age in Chukotka that have been shown to have

been derived from this same general region in Triassic

time [16].

In conclusion, we suggest that crustal xenoliths from

Zhokhov Island were plucked from shallow crustal depths

from the basement beneath the basalt flows of the De Long

archipelago, where the subsurface geology, based on this

data, is likely to be comprised of late Neoproterozoic

granitic gneisses and Phanerozoic sedimentary cover per-

haps as young as Triassic or Jurassic (?) Accordingly, the

basement rocks of Zhokhov Island are linked to, and

autochthonous, with respect to, the northern Timanide

region of Baltica upon closure of the Eurasia Basin

(Fig. 1). The inferred basement beneath Zhokhov Island is

also correlative to that of parts of the Arctic Alaska–Chu-

kotka continental block. The Hf isotopic data from Zho-

khov Island zircons indicate the rocks analyzed represent

juvenile magmatic additions during the latter Neoprotero-

zoic (roughly correlated with the breakup of Rodinia and

coeval plume-related magmatism) and are consistent with

the reworking of this isotopically evolving crustal reservoir

during Paleozoic and Mesozoic magmatism and crustal

modification/maturation.
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