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ABSTRACT. We investigated how monazite grains in country rocks responded to the
intrusion of the Miocene Searchlight pluton in southern Nevada. Country rock samples
were collected from the roof zone and along transects on the flanks (wallrock) of the
16 to 17 Ma pluton. Deep wallrock Ireteba granite monazite grains have patchy
secondary growth zones of Searchlight age overprinting primary growth zones of
Ireteba age (~66 Ma). Shallow wallrock Proterozoic gneiss zircon grains define a
discordia with an upper intercept age of 1.74 * 0.02 Ga corresponding to crystalliza-
tion of the protolith. Proterozoic gneiss monazite grains define a discordia with an
upper intercept age of 1.64 + 0.02 Ga and a poorly-defined lower intercept age of 75 *
61 Ma that may correspond to the Ireteba intrusion. EMP analyses show that patchy
secondary zones in Proterozoic gneiss monazite grains were contemporaneous with
intrusion of the Ireteba granite, not the Searchlight pluton. Oxygen isotopes in Ireteba
monazite, hydrogen and oxygen isotopes in whole rocks from the Ireteba transect, and
oxygen isotopes in whole rocks from the Proterozoic gneiss transect show no system-
atic pattern related to the contact. No geochemical data support the hypothesis that
hydrothermal fluids associated with intrusion of the Searchlight pluton caused mona-
zite in the Proterozoic gneiss or Ireteba granite wallrock to partially recrystallize.
Ireteba samples with the most intensely altered monazite were at the greatest pa-
leodepths at the time of Searchlight intrusion and are the most deformed, suggesting
that strain caused Ireteba monazite grains to partially recrystallize. In Proterozoic
gneiss country rock monazite grains are present on the flanks but absent from the roof
zone, suggesting that high fluid fluxes in the roof may have destroyed monazite. Strong
focusing of hydrothermal fluid and heat into the roof zone prevented the development
of a well-defined contact metamorphic aureole in Ireteba granite and Proterozoic
gneiss wallrocks.
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INTRODUCTION

Monazite is a light rare earth element (LREE) phosphate that readily incorporates
Th and U into its crystal structure while excluding Pb, making it a prime candidate for
geochronology. The current explosion of interest in monazite and its widespread use
in geochronology is primarily a result of advances in analytical instrumentation.
Development of new instruments for isotopic dating of monazite such as SIMS
(Quidelleur and others, 1997) and LA-ICP-MS (Paquette and Tiepolo, 2007) and new
methodologies for chemical dating of monazite using existing instruments such as the
electron microprobe (Williams and others, 1999) and XRF (Engi and others, 2002)
have prompted many studies that have highlighted the unique utility of monazite for
dating specific types of geologic events. However, the interpretation of in-situ monazite
ages is complicated because monazite can grow in a variety of ways and commonly
displays complex internal zoning, and no accepted criteria exist for correlating
internal growth zones with specific growth mechanisms.
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In their review of the paragenesis of monazite Spear and Pyle (2002) noted that
monazite growth or recrystallization can occur in response to changes in pressure and
temperature (heterogeneous reaction), strain, fluid influx (dissolution/reprecipita-
tion), annealing (Ostwald ripening), and precipitation from a fluid. Monazite may
form during prograde metamorphism, and due to its high closure temperature for the
U, Th-Pb systems it can preserve its primary crystallization age through peak metamor-
phism (Copeland and others, 1988; Smith and Barreiro, 1990; Kingsbury and others,
1993; Harrison and others, 2002). Monazite may also record events during retrograde
metamorphism (Ayers and others, 2002; Gordon and others, 2009). Metamorphic
zircon grains commonly record a narrow range of ages corresponding to one metamor-
phic event generally interpreted to represent near-peak metamorphism, whereas
metamorphic monazite ages can span a larger range, often being younger but
sometimes older than zircon ages.

Another aspect of monazite that distinguishes it from zircon is its greater tendency
to recrystallize partially or completely in the presence of fluids, resulting in “patchy”
zoning, a shift in oxygen isotope composition, and partial or complete resetting of the
U, Th-Pb systems (Ayers and others, 2006; Bosse and others, 2009). Thin rims of
monazite (and zircon) can also grow on pre-existing grains in response to fluid activity,
as revealed by SIMS depth profiling (Gordon and others, 2009). These characteristics
make monazite useful for identifying and dating fluid events. In plutonic settings
where country rocks such as quartzo-feldspathic gneiss or granite are relatively unaf-
fected by hydrothermal alteration, monazite may be the only useful indicator of fluid
infiltration.

In this study we tested the hypothesis of Townsend and others (2000) that patchy
secondary zones in monazite grains from the Ireteba granite formed in response to
infiltration of hydrothermal fluids associated with intrusion of the Searchlight pluton
in southern Nevada. We expanded the scope of the study to include monazite grains
from Proterozoic gneisses in the Searchlight country rock that also display patchy
zoning. We used geochronology and stable isotopes in an attempt to evaluate a
possible link between Searchlight-associated hydrothermal fluids, which formed exten-
sive hydrothermal ore deposits above the Searchlight pluton, and monazite alteration
in country rocks.

Hydrothermal Alteration of Monazite

Hydrothermal alteration of monazite is an important process because it disturbs
the monazite U, Th-Pb systems (Poitrasson and others, 2000; Mathieu and others,
2001). This creates the potential to date hydrothermal alteration events. Monazite has
been used to date hydrothermal alteration events in a contact metamorphic aureole
(Ayers and others, 2006), a migmatite dome (Gordon and others, 2009), pegmatite
veins (Bosse and others, 2009), and multiple gold mineralization events in Australia
(Rasmussen and others, 2006; Rasmussen and others, 2007).

As noted by Harrison and others (2002), radiogenic lead can be lost through
diffusion, dissolution-reprecipitation or recrystallization. Diffusive Pb loss can cause
individual growth zones to become discordant; however, this is presumably rare
because the diffusivity of Pb in monazite is very low, resulting in very high closure
temperatures (Cherniak and others, 2004; McFarlane and Harrison, 2006). In con-
trast, dissolution-reprecipitation and recrystallization result in loss of all radiogenic Pb,
causing complete resetting of the affected growth zones (Williams and others, 2011).
Although strain-induced recrystallization is responsible for monazite resetting in a few
cases (Getty and Gromet, 1992), dissolution-reprecipitation in the presence of an
aqueous fluid is considered to be the most common resetting mechanism (Harlov and
Hetherington, 2010; Harlov and others, 2011).
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Fig. 1. Flow chart illustrating approach to identifying monazite growth mechanism. Diagram assumes
that CR = Country Rock was one homogeneous unit prior to intrusion. Abbreviations: ppt = precipitation,
X = reaction.

Alteration and Resetting of Monazite in Contact Metamorphic Aureoles

Because monazite can grow, recrystallize, and alter in a variety of ways, it can be
used to date many different types of processes. We chose to characterize the response
of monazite to metamorphic and/or fluid events by focusing on country rock associ-
ated with magma intrusion and fluid exsolution at upper crustal conditions for the
following reasons: contact metamorphic zones have better geologic control than
regional metamorphism (small scale, simple geometry); unmetamorphosed protoliths
are commonly available for comparison with metamorphosed equivalents; transects
allow evaluation of effects of continuous changes in metamorphic grade and alteration
intensity; fluid fluxes and peak temperatures vary systematically in relation to the
contact; and monazite alteration has previously been demonstrated in such settings.
Plutons act as sources of heat and volatiles that can alter and isotopically reset monazite
in country rock. Characterizing the response of monazite to a well-defined, discrete
event (magma intrusion) allows refinement of interpretations of monazite ages in less
well-defined settings. Figure 1 illustrates our approach for distinguishing nine possible
responses of monazite in country rocks to intrusion.

The ideal geometry for characterizing the effect of magmatic intrusion on country
rocks is a planar contact; linear traverses from the contact into country rock allow
evaluation of the effect of continuously decreasing intensity of metamorphism and
fluid flux on texture and trace element and isotopic composition of monazite and its
host rock. Carson and others (2002) used this approach to evaluate the effects of fluids
derived from a pegmatite vein on the zircon U-Pb system along a traverse perpendicu-
lar to the vein contact.
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Several recent studies document the effect of contact metamorphism on mona-
zite. Ayers and others (2006) studied the response of monazite in Cambrian quartzite
country rock to the intrusion of the Birch Creek granite. They found that monazite
grains ~0.5 km from the contact experienced moderate- to low-temperature alteration
by F-rich magmatic fluids, resulting in patchy zoning and 380 and Th-Pb ages similar
to monazite grains in the pluton. In contrast, monazite grains in samples ~0.6 km from
the contact and outside of the mapped hydrothermal zone show concentric zoning
and 3'®0 and Th-Pb ages very different from monazite grains in the pluton. Ayers and
others (2006) suggested that monazite grains within the hydrothermal alteration zone
dissolved and reprecipitated during magmatic fluid infiltration (mechanism #6 in fig.
1), while monazite grains outside of the zone were unaffected.

Other researchers also find an important role for fluids during growth/
recrystallization of monazite in contact metamorphic aureoles. For example, Rasmus-
sen and Fletcher (2002) documented the low-temperature growth of monazite in
carbonaceous shales in response to intrusion of dolerite sills and associated hydrother-
mal fluid infiltration, which opens up the prospect of dating mafic intrusions that have
no dateable minerals. Rasmussen and others (2001) demonstrated that monazite can
precipitate from low-temperature, oxidizing hydrothermal fluids in the aureoles of
granitic intrusions. Both studies attributed monazite growth to fluid mobilization and
precipitation of REE.

In the studies of Ayers and others (2006), Rasmussen and Fletcher (2002), and
Rasmussen and others (2001), monazite grains in country rock close to the intrusion
yield one age, the age of intrusion. However, in some settings in-situ dating of monazite
in country rocks yields more than one age (Townsend and others, 2000), and in many
settings it is not clear what process produced or reset the dated monazite, which
hampers interpretation of measured ages.

We used previously collected samples of the Ireteba granite (country rock of the
Searchlight pluton) along with new samples collected along transects from the contact
into Ireteba granite and Proterozoic gneiss country rock to test the hypothesis of
Townsend and others (2000) that hydrothermal fluids were responsible for the partial
recrystallization (through dissolution-reprecipitation) of monazite in the Searchlight
aureole, and to see if monazite can be used to identify and date fluid infiltration events
even in rocks that lack evidence of intense hydrothermal alteration. We also measured
the stable isotope compositions of whole rocks collected along transects to look for
evidence of fluid infiltration and to possibly identify the source of the fluid. Our
primary objectives were to characterize the response of pre-existing monazite to the
intrusion of an igneous body, to seek evidence of fluid infiltration into the country
rocks of the Searchlight intrusion, and to identify the geologic processes associated
with monazite ages measured in-situ.

BACKGROUND AND GEOLOGICAL SETTING

The study area is in the southern Eldorado and northernmost Newberry Moun-
tain ranges in southeastern Nevada. Itis part of a large west-tilted fault block within the
northern Colorado River Extensional Corridor, a 50 to 100 km wide extensional belt
that experienced peak extension and magmatism at ~16 to 15 Ma (Faulds and others,
1990). Miocene age volcanic and sedimentary strata are exposed along the western
edge of these fault blocks (Bachl and others, 2001; Faulds and others, 2001; Faulds and
others, 2002). Volcanic rocks range in composition from rhyolite to basalt (Faulds and
others, 2002). Basement rocks consist mainly of Proterozoic granites and meta-igneous
and meta-sedimentary gneisses intruded by intermediate to felsic plutonic rocks that
are coeval with the volcanic strata (fig. 2) (Bachl and others, 2001; Perrault, ms, 2006).
First we describe the Searchlight pluton, and then the Ireteba granite and Proterozoic
gneiss country rocks that it intruded and metamorphosed.
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Fig. 2. Geologic map of Searchlight pluton and country rocks showing sample locations, after Bachl
(2001) and Perrault (ms, 2006). Samples IR1, IR20, and RMC3 collected and described by Townsend and
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Searchlight Pluton

The Searchlight pluton is part of a large west-dipping block in the footwall of the
Dupont Mountain fault (Bachl and others, 2001). Tilting has exposed this pluton in
cross section with the shallow levels exposed to the west and the deeper levels of the
pluton exposed in the east (Bachl and others, 2001). The upper Searchlight pluton is a
fine- to medium-grained quartz monzonite (63-71 wt.% SiO,), the middle Searchlight
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Fig. 3. Schematic cross section, with no vertical exaggeration, of the Searchlight pluton after emplace-
ment (modified from Bachl and others, 2001). Sample locations for this study are filled circles with sample

labels.

is a medium-grained granite (69-78 wt.% SiO,), and the lower Searchlight is a
coarse-grained quartz monzonite (59-70 wt.% SiO,) (Bachl and others, 2001). Measure-
ments of crystallization depth by aluminum-in-hornblende barometry suggest an initial
depth for the roof of the pluton at 3 km and the floor at 13 km (Bachl and others,
2001). The Highland Range Volcanic Sequence is believed to be the volcanic counter-
part of the Searchlight intrusion (Faulds and others, 2001, 2002; Colombini and

others, 2011).

Zircon geochronology documents an approximately two million year history for

the Searchlight

pluton, with ages ranging from 15.8 to 17.7 Ma (Cates and others,

2003; Means and others, 2003; Miller and others, 2003). Most of the pluton, however,

appears to have

crystallized in the interval 16.8 to 15.8 Ma. To the southwest the upper

pluton contacts both Proterozoic augen gneisses and Miocene volcanic rocks. A
moderately irregular contact with the ~66 Ma Ireteba granite bounds the deeper
portions, with re-entrants of up to 200 to 300 m. Felsic dikes from the lower unit
penetrate the Ireteba granite up to several hundred meters, with contacts in outcrop
appearing razor-sharp (Bachl and others, 2001). Figure 3 is a schematic cross-
section of the pluton after emplacement. Deformation during and after Search-
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light intrusion led to the development of a mylonite zone in the lowermost
Searchlight and the deeper parts of the Ireteba granite that were originally beneath
the Searchlight pluton.

Intrusion of the Searchlight pluton led to the formation of extensive hydrother-
mal deposits of Cu, Au, and Ag in its roof zone. More than 420,000 tons of ore were
mined from the Searchlight district between 1902 and 1934 (Callaghan, 1939; Luding-
ton and others, 2005; Lledo and Cline, 2008). Much of the important hydrothermal
ore deposits occur in the roof zone of the upper Searchlight pluton where it intrudes
the Miocene volcanic sequence (Callaghan, 1939). The overlying Miocene volcanic
sequence is roughly 3 km thick, consistent with depth estimated by aluminum-in-
hornblende barometry and supporting interpretation of Searchlight pluton as a
magma chamber or series of chambers that underlay a volcano (fig. 3; Faulds and
others, 2002, 2008). Remnants of Proterozoic gneiss in the roof zone host abundant
quartz-rich, ore-bearing veins that are genetically related to the Searchlight pluton
(Callaghan, 1939). The uppermost Searchlight pluton is largely unaltered, but overly-
ing Miocene volcanic rocks in the roof zone show evidence of intense alteration
including oxidation (Ludington and others, 2005; Lledo and Cline, 2008). The
volcanic sequence is altered only where it overlies the Searchlight pluton.

Ireteba Granite

Miocene tilting has also provided a cross section of the ~66 Ma Ireteba pluton,
with the shallowest levels to the west and deeper levels to the east (Townsend and
others, 2000; Kapp and others, 2002). The current exposures of the pluton were ~5 to
13 km deep when the Searchlight pluton was emplaced at 17 to 16 Ma (Townsend and
others, 2000). The Ireteba is a two-mica granite composed of plagioclase, quartz,
K-feldspar, biotite, muscovite, accessory minerals, and locally garnet (Kapp and others,
2002). Zircon rim ages yielded an average °°Pb/***U age of 66.5 + 2.5 Ma (Kapp and
others, 2002). Along the southern margin of the pluton the shallow levels are in
contact with Proterozoic gneiss and the deeper portions contact the 16.8 Ma Lower
Searchlight quartz monzonite, while the northern border of the pluton is in contact
with the 15.8 to 15.6 Ma Aztec Wash pluton (Cates and others, 2003). The western
portion of the Ireteba pluton is undeformed. A dominantly linear, ductile strain fabric
appears and increases in intensity toward the southeastern (deeper) part of the pluton.
A band of highly deformed mylonitic granite extends south from the southeast corner
of the main Ireteba body, east of Searchlight pluton, and underlies the east-dipping,
brittle Dupont fault (figs. 2 and 3) (Kapp and others, 2002). Evidence of low-
temperature fluid alteration includes minor sericitization of plagioclase, chlorite
replacement of biotite, and minor quartz veins and vugs, suggesting that the fluid/rock
ratio was low.

Townsend and others (2000) identified a bimodal age distribution in Ireteba
monazite grains with peaks at 64 and 16 Ma (Kapp and others, 2002). Ion microprobe
(IMP) Th-Pb monazite dating of shallow samples yielded 65 to 60 Ma ages for
magmatic and some replacement zones in monazite, while crosscutting secondary
zones that have a vein-like appearance yielded ages as young as Miocene (Townsend
and others, 2000). Monazite from deeper samples yielded a few 65 to b5 Ma ages for
remnant magmatic zones and abundant Miocene ages for replacement zones (~16
Ma) that displayed patchy zoning (Townsend and others, 2000). The ~16 Ma ages
were interpreted to result from the dissolution-reprecipitation of select monazite zones
by fluids released during the emplacement and cooling of the adjacent Miocene
Searchlight and Aztec Wash plutons (Townsend and others, 2000). Although Townsend
and others (2000) clearly showed that portions of monazite grains in the Ireteba
granite recrystallized and reset at approximately the same time as the intrusion of the
Searchlight pluton, and that the secondary replacement zones commonly display
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patchy zoning, the role of hydrothermal fluids and the extent to which the Searchlight
intrusion may have altered other country rock in the area remain unclear. Oxygen
isotopic compositions of the Ireteba and Searchlight plutons do not overlap [Ireteba
3180 8.9-8.8%0 (Townsend, ms, 1999; Townsend and others, 2000; Kapp and others,
2002), Searchlight 580 7.0, 7.1%0 (Bachl and others, 2001)], so if a Searchlight-
associated fluid infiltrated the Ireteba it could have caused distinct changes in oxygen
isotope composition of whole rocks and Ireteba monazite grains.

Proterozoic Gneiss

Proterozoic gneiss country rocks are part of the Paleoproterozoic Mojave prov-
ince. The oldest known rocks of the Mojave province are approximately 1.8 Ga
metasedimentary rocks, but detrital and inherited zircon ages and whole-rock Nd and
Pb isotope data demonstrate contributions from 2.8 to 1.8 Ga sources (Bennett and
DePaolo, 1987; Strickland and others, 2013). Gabbroic to granitic magmas (now
gneiss) crystallized at ~1.76 Ga, followed by high-grade metamorphism and emplace-
ment of leucogranites at 1.74 Ga, and intrusion of granites and some gabbros and
metamorphism during the 1.72 to 1.70 Ga Ivanpah orogeny (Wooden and Miller,
1990). After peak orogeny abundant intermediate to felsic magmas intruded the
eastern Mojave between 1.69 and 1.62 Ga, with a final metamorphic event at ~1.67 Ga
(Wooden and Miller, 1990). Strickland and others (2013) report episodes of monazite
growth in Mojave province rocks of the Ivanpah Mountains, 50 km west of the
Searchlight area, at 1.74 and 1.67 Ga.

At 1.45 to 1.40 Ga abundant granitic magma intruded the eastern Mojave crust to
form part of the ca. 1.4 Ga “anorogenic” granite belt that transects North America
(Anderson, 1989; Miller and Wooden, 1994). Intrusion of diabase dikes and sills at 1.1
Ga marked the last Proterozoic event recorded in the eastern Mojave (Hammond and
Wooden, 1990). Proterozoic exposures in the Searchlight area primarily consist of
gneisses. The southern and northern portions of the roof zone (see fig. 2) are chiefly
augen orthogneiss, comprising strained, polycrystalline quartz, highly altered plagio-
clase, potassium feldspar phenocrysts (now augen), secondary muscovite, biotite,
chlorite, opaques, zircon, apatite, and crosscutting epidote-rich veins. The northern
wall zone (fig. 2) is a complex zone of biotite- and sometimes garnet-rich paragneiss,
interleaved with orthogneiss, leucogranite that can be garnet-rich, and minor amphibo-
lite.

Sample Descriptions

Detailed sample descriptions are given in Crombie (ms, 2006). Five samples of the
Ireteba granite were collected along a 0.9 km north-trending transect perpendicular to
the lower Searchlight-Ireteba contact (figs. 2 and 3, table 1). The Ireteba samples are
all strained (lineated and foliated) leucogranites and show little textural or mineralog-
ical evidence of alteration, with minor sericitization of plagioclase and replacement of
biotite by chlorite.

While the lithologies of the Proterozoic gneisses are highly variable, sample
collection focused on those rocks most likely to contain monazite, that is, rocks with
peraluminous mineralogy. Samples of the Proterozoic gneiss were collected along a 0.5
km transect northward from the northern flank of the Searchlight pluton into the
country rock (XG-10, XG-4, XG-5, and XG-6), in the wallzone close to the contact
(XG99 and XG-11), from a large block in the lower Searchlight zone (XG-12), and from
the roof zone above the Searchlight pluton (XG-1, XG-2, XG-3, XG-7, XG-8, XG-13)
(figs. 2 and 3, table 1). No monazite grains were found in XG-1, XG-3, XG-8, and
XG-13, so we will not discuss them further.



intrusion of the Searchlight pluton, southern Nevada 353

TABLE 1
Whole rock major and trace element compositions of samples

Sample  1G-1 1G-2 1G-3 1G4 1G-5 XG-10 XG-4 XG-5 XG-6 XG-2 XG-7 XG-9 XG-11 XG-12

Ireteba Granite transect Proterozoic Gneiss transect Roof Wall Block
SiOza 753 751 744 725 750 635 750 734 73.1 677 596 663 712 616

ALO;* 138 142 149 161 145 167 129 147 147 138 168 138 142 178

Fe203a’b 0.87 091 090 0.85 090 7.75 4.04 0.61 349 4.64 692 828 381 6.20
MnO? 0.0l 0.02 0.02 0.06 0.06 0.09 0.14 0.02 0.04 0.08 0.12 0.14 0.03 0.06
MgO? 0.17 0.19 0.18 0.13 0.14 253 093 0.17 077 183 336 275 149 230

CaO® 14 16 17 09 15 02 21 07 14 48 54 18 12 21
Nao,O° 37 42 44 44 44 13 25 24 29 41 43 27 26 32
K,0° 47 37 35 49 35 69 20 79 30 20 21 32 49 58

TiOy" 0.07 0.08 0.06 0.05 0.05 1.00 0.26 0.01 048 0.76 1.04 1.03 045 093
P,05" 0.05 0.05 0.05 0.05 0.04 0.04 0.05 0.09 008 026 046 0.07 0.06 0.08

LOI 052 055 051 044 073 1.76 09 037 106 26 108 099 079 0.74
Total® 99.8 99.9 99.7 99.8 99.2 992 99.7 99.7 999 995 999 100.0 99.5 995

ACNKY 102 1.04 1.06 1.14 1.07 078 126 1.07 138 0.88 124 167 121 1.16
A/NKY 125 132 135 129 132 1.75 202 117 182 156 181 1.74 149 154

Sc <1 2 2 4 2 18 21 3 5 9 13 21 16 16
v 1 <5 6 <5 <5 119 11 <5 39 71 104 125 56 115
Cr <20 <20 <20 <20 <20 90 <20 <20 30 40 80 80 40 80
Co <1 <1 <1 <1 <l 14 4 <1 5 7 14 15 5 8
Ni <20 <20 <20 <20 <20 30 <20 <20 <20 <20 40 40 <20 20
Zn <30 <30 <30 60 30 60 <30 <30 50 <30 60 70 <30 30
Ga 13 13 13 16 14 26 13 10 15 15 17 17 14 17
Rb 73 55 64 111 79 138 68 135 72 32 44 153 133 159
Sr 511 492 479 162 383 136 224 267 200 502 775 153 248 483
Y 52 38 6 147 58 254 784 105 124 119 166 49.1 495 468
Zr 62 62 43 31 36 253 391 22 156 159 179 297 230 293
Nb 19 27 28 57 36 18 8 0.7 95 105 106 155 8.8 12.3
Sb 09 09 09 1 07 1.1 07 08 13 1.1 1 0.9 0.6 1
Cs 04 04 04 05 04 37 11 38 13 03 1 3.7 4 3.8
Ba 1406 1413 1218 593 1099 1306 517 1698 793 555 1213 418 1182 2310
La 16 122 11.7 10.6 6.46 45 63 25 53 59 34 70 52 51
Ce 30 233 23 228 124 88 131 34 104 110 78 146 101 100
Pr 34 27 27 29 14 10 16 29 12 12 10 17 12 12
Nd 11 92 92 113 48 36 59 80 41 37 35 61 40 40
Sm 20 15 1.7 26 11 59 12 092 62 52 62 111 7.1 6.9
Eu 052 053 053 035 036 14 18 1.8 21 14 20 1.7 1.4 1.9
Gd 14 12 15 25 10 57 125 07 49 41 53 101 7 6.3
Tb 0.19 0.14 02 04 0.16 094 211 0.17 061 049 0.67 1.5 1.3 1.1
Dy 093 066 1.1 23 092 50 13 14 26 24 32 8.4 8.2 6.9
Ho 0.17 0.12 02 046 0.18 09 284 033 041 041 06 167 176 1.58
Er 0.5 037 055 138 057 239 915 109 1.0 1.1 1.6 503 548 498
Tm 0.08 0.06 0.08 022 0.10 031 146 0.17 0.12 0.16 022 074 0.84 0.82
Yb 051 044 054 145 0.69 1.84 942 1.11 065 099 137 461 538 529
Lu 0.08 0.07 0.08 021 0.11 027 136 0.15 0.09 0.14 0.19 0.69 0.77 0.77
Hf 22 21 1.5 16 16 74 113 1.1 46 43 45 8.4 6.8 8.6
Ta 032 0.1 0.11 0.14 015 093 039 0.19 068 0.77 049 095 049 0.67
Tl 032 029 034 056 047 089 038 0.74 044 0.19 034 1.01 0.6 0.99
Pb 22 22 20 26 27 11 15 43 20 10 15 14 6 50
Th 73 32 29 55 12 12 17 1.1 15 10 0.7 20 16 17
U 095 051 023 038 021 1.0 3.0 052 085 048 0.19 23 1.7 1.8

* Oxides in weight percent, normalized to 100% total.

" Total Fe as Fe,O.

¢ Total oxides plus LOI prior to normalization.

4 Rock is peraluminous if A/CNK = molar (Al,O3/ (2+CaO + Na,O + Ky,0)) is > 1, and metaluminous
if A/CNK < 1 and A/NK = molar (Al,O4/ (Na,O + K,0)) is > 1.
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METHODS

We cut each hand sample into two slabs, one for a standard petrographic thin
section and the other for whole rock major and trace element and oxygen isotope
analysis. We pulverized the slab for geochemical analyses in an alumina ceramic shatter
box. Major and trace element and oxygen isotope analysis of whole rock powders of
samples from the two transects were performed by Actlabs. Whole rock samples from
the Ireteba granite transect were analyzed by Actlabs for hydrogen isotopes as well. We
used the remainder of each sample for mineral separation.

Monazite was separated from samples using standard mineral separation tech-
niques. Procedures in order of use included using a jaw crusher, rock pulverizer, water
table, heavy liquids, and a Franz magnetic separator. Monazite was then hand-picked
and mounted in 1 inch diameter epoxy rounds with 5564 and 44069 monazite
geochronology standards. We polished and carbon coated the mounts and then
imaged grains using a Hitachi S-4200 Scanning Electron Microscope (SEM) at Vander-
bilt University. We identified grains using an Energy Dispersive Spectrometer, and
collected Back Scattered Electron (BSE) images of each grain. BSE images show
micrometer-scale differences in brightness that correspond to changes in mean atomic
number (composition). We used these images to guide our selection of analysis spots
using Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) and
Electron Microprobe (EMP).

LA-ICP-MS analysis was conducted at Vanderbilt University using a Perkin Elmer
6100 DRC ICP-MS coupled with a New Wave/Merchantek 213 nm Nd:YAG laser, and a
mixture of He and Ar carrier gas. He carrier gas was flushed into the ablation cell and
admixed with nebulizer argon ~30 cm behind the ablation cell. This mixture was then
transported to the ICP-MS. Before each analysis session we warmed up the laser by
firing at low power for one hour.

For LA-ICP-MS monazite ﬂgeochronology we measured the following analytes in all
sessions: 1°P, 1%91.a, 204pp, 206pp, 2O7Pb, 208pp, 232, 238U, and 2**ThO. During the
optimization process we fired the laser at NIST-610 glass using analysis settings (5 Hz,
pulse energy density of ~11 J/cm?, and a 30 wm spot size) and adjusted the rf-power,
lens voltage, and nebulizer flow to increase sensitivity for each analyte and keep the
ratio of Th/ThO lower than 0.5%. Unknown data were collected in groups of five
analyses bracketed by analysis of external standards [554 monazite for ***Pb/***Th
(Harrison and others, 1999) and 44069 monazite for 206pp /238 and 207Pb/ 235y
(Aleinikoff and others, 2006) ]. After every fourteen analyses we re-analyzed NIST-610
glass. Each sample analysis lasted 100 s, with a 30 s background measurement during
which the laser was not firing.

For LA-ICP-MS zircon geochronology we analyzed for 97y, 204 pp, 206 pp, 207 pp,
208ph, #32Th, ***U, and ***ThO. We optimized the ICP-MS using continuous ablation of
NIST 610 glass to provide maximum sensitivity of ***Pb while maintaining low oxide
formation (ThO*/Th™ < 0.5%). We used NIST610 as an external standard for
determination of concentrations of Ti, U and Th, and Harvard 91500 zircon as the
external standard for geochronology (Wiedenbeck and others, 2004). Zirconium was
the internal standard for determination of trace element concentrations. For each
analysis we acquired background signals for 30 s and time-resolved analyte signals for
70 s. We rejected the first few seconds of each signal to avoid obtaining data from
surface contamination. The analysis pattern was NIST610 2x, 91500 2x, 5-10 samples,
and repeat. Spot size was 60 or 80 um depending on the size of the zone being dated,
and laser frequency was either 10 or 15 Hz.

For both monazite and zircon geochronology we transferred the raw LA-ICP-MS
data to the GLITTER software package for reduction (Griffin and others, 2008).
GLITTER calculates the relevant isotopic ratios and displays them as time-resolved
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intensity traces (van Achterbergh and others, 2001). We then inspected the time-
resolved signals and selected the most stable portions of the signal for integration.
Common lead corrections calculated using the method of Andersen (2002) were
generally negligible and so were ignored. Resulting isotope ratios and errors were
exported to Microsoft Excel and the Isoplot add-in (Ludwig, 2000) was used to
generate concordia plots and probability density plots and histograms. The Unmix
routine in Isoplot was used to identify peaks in the age spectra and to estimate the
proportions of age groups.

To check the accuracy of our LA-ICP-MS monazite age dates we analyzed second-
ary standards. From 32 analyses of 44069 monazite collected during two sessions using
554 monazite as a standard, we rejected two analyses as outliers and obtained a
weighted average ***Pb/***Th age of 419.8 = 4.2 Ma (95% conf. limits, mean square of
weighted deviates (MSWD) = 1.9); the concordant *’°Pb/***U age determined using
ID-TIMS is 424.9 = 0.4 Ma (Aleinikoff and others, 2006). We also compared 208py, /
#2Th ages measured using LA-ICP-MS and previously measured using a Cameca ims
1270 IMP. IMP analysis of monazite BMJ-1 yielded a °*Pb/***Th age of 117 = 1 Ma
(Bryant and others, 2004). We collected eight analyses of monazite BMJ-1 and rejected
one as an outlier; the remaining seven analyses yielded an average ***Pb/?**Th age of
119.8 = 4 Ma (95% conf. limits, MSWD = 7.9). We conclude that our LA-ICP-MS
monarzite age dates are accurate, although MSWD values are commonly high, suggest-
ing either that samples were not homogeneous, or errors on individual analyses were
underestimated.

In order to check the accuracy of our method for zircon U-Pb dating we
performed eleven analyses of secondary standard AS3 during two sessions and ob-
tained a weighted average *°°Pb/***U age of 1097 = 20 Ma (95% CL, MSWD = 5.4).
The accepted value is 1099.0 £ 0.5 Ma (Paces and Miller, 1993). The average one
sigma error on 206ph /2381 individual analyses of AS3 was 13 Ma, corresponding to a
precision of ~1% RSD. We also performed three analyses of sample MW99-B-2
previously dated at 231 = 5 Ma by IMP (Ayers and others, 2002) and obtained a
weighted average **°Pb/***U age of 239 * 5 Ma (95% CL, MSWD = 0.31).

Because the LA-ICP-MS spot size was often larger than growth domains visible in
BSE images, we measured chemical ages of Proterozoic gneiss monazite grains using
EMP chemical age dating, which has higher spatial resolution than LA-ICP-MS. Major
element and trace element concentrations, and Th-U-Pb dates, of monazite were
measured at Rensselaer Polytechnic Institute using a Cameca SX-100 EMP operating at
15 keV and 100 nA with a beam width of 5 um using the methods of Pyle and others
(2005).

Oxygen isotope compositions of monazite from sample IR-1 of Townsend and
others (2000) were measured in-situ using the Cameca ims1270 multi-collector IMP at
UCLA using the methods of Ayers and others (2006). Spot size was ~15 X 20 wm in
diameter. Conventional mass spectrometric oxygen isotope analysis of monazite
standards was performed by Bruce Taylor of the Geological Survey of Canada using a
conventional fluorination procedure (Clayton and Mayeda, 1963) followed by gas
source mass spectrometric analysis. Measured conventional values of 'O for mona-
zite standards were Brazil = 1.43 + 0.08%o0 and 554 = 7.54 * 0.12%o (all '%0 values
referenced to SMOW). Measurements of 80 /1%0 on the IMP were background-
corrected. Periodic measurement of '0/'®O on a standard over the course of an
analytical session showed no significant drift over time. However, measured values of
'%0/'°0 changed after we changed mounts. Accurate measurements require that stan-
dards and samples be prepared in the same mount. We therefore used the average value of
the correction factor CF determined by multiple measurements of standard 554 on the
same mount during the same analytical session as the samples to correct the background-
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corrected #0/'°0 measured ratios of the samples according to: (”"O/]BO)Ls =
(**0/'°0),, ;*CF, where CF = ('®*0/'°0), 4/ ("*0/'°0),,qqa and t = true, m =
measured, s = sample, and std = standard. In a given session standards 554 and Brazil
have nearly identical correction factors even though their respective ThO, concentra-
tions of ~3.7 percent and ~6.8 percent are very different, suggesting that composition
does not affect the value of §'®0O measured on the IMP. The overall precision of our
measurements is £0.1 permil based on multiple measurements of standards.

RESULTS

Ireteba Granite

The Ireteba granite (IG samples) is a peraluminous granite with 72 to 75 weight
percent SiO, (table 1). Harker diagrams for IG samples show that concentrations of
compatible elements (Ca, Mg, Fe, Ti, Al, Sr, Ba, LREE) decrease and incompatible
elements (Rb, K), though scattered, increase with increasing SiO,, as observed by Kapp
and others (2002). Generally, samples have LREE concentrations 20-50 x chondrite,
HREE concentrations 1.5-3.6 x chondrite, and lack Eu anomalies (fig. 4A). This
combined with high Sr concentrations (fig. 4B) suggests a garnetrich, feldspar-poor
source (Kapp and others, 2002). However, IG-4 has a negative Eu anomaly and a
higher concentration of HREE (~7 x chondrite), as well as higher Sr and Ba,
suggesting significant fractionation after extraction from its source.

Whole rock 3'®0 values for the five Ireteba granite samples range from 8.1 to 9.5
permil (table 2). This correlates well with four previously analyzed Ireteba granite
samples with whole rock 8'®O values ranging from 8.2 to 8.8 permil (Townsend and
others, 2000; Kapp and others, 2002). Whole rock 3D values range from —87 to —98
permil (table 2). No correlation of whole rock 8'%0 or 8D values with distance from the
Searchlight contact emerged (fig. 5).

BSE images show two main types of compositional zoning in monazite from all
monazite-bearing samples collected in the Searchlight aureole. We interpret concen-
tric zoning to be primary magmatic zoning, and secondary patchy zoning that
overprints the primary concentric zoning to result from dissolution-reprecipitation or
recrystallization of monazite (fig. 6). Interaction with hydrothermal fluids could cause
dissolution-reprecipitation (mechanisms 5-7 in fig. 1), while heat (compare mecha-
nism 8) or strain (mechanism 9) could cause recrystallization. Many monazite grains in
this study have a combination of concentric and patchy zoning. All compositional
zones have sharp contacts, suggesting that intra-grain chemical diffusion did not cause
or modify the zonation.

All five samples of Ireteba granite yielded monazite. The monazite grains are
anhedral, rounded to angular, and range from ~50 pm to ~200 pm in diameter (fig.
6). BSE images show some combination of secondary patchy and primary concentric
(magmatic) zoning in monazite grains (Townsend and others, 2000). Monazite
compositional zoning commonly results from the two coupled substitutions (Zhu and
O’Nions, 1999):

REE®*" + P°" < Th*" or U*" + Si** (huttonite) (1)
9REE®*" <> Th*" or U*" + Ca®" (brabantite) (2)

Zoning expressed as variable BSE intensity is negatively correlated with La x-ray
intensity (fig. 6A) and positively correlated with Th x-ray intensity (fig. 6B). This means
that zones that are bright in BSE images have relatively high Th and low La concentra-
tions, as expected for brabantite and huttonite substitution. Monazite grains with only
patchy zoning are most common in the collected samples. Because Townsend and
others (2000) measured many IMP Th-Pb ages and correlated ages with zoning, we did
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Fig. 4. Ireteba granite whole rock trace element compositions. (A) Chondrite normalized REE
diagram. Chondrite values from Boynton (1984). (B) Concentrations normalized to primitive mantle (Sun
and McDonough, 1989).

not place a high priority on dating Ireteba monazite grains. Although we measured
monazite compositions using an EMP (table 3A), we did not measure EMP chemical
ages of Ireteba monazite grains and did not record the locations of EMP or LA-ICP-MS
analyses, so we cannot correlate the measured ages with internal zoning (the same is
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TABLE 2

Distance from contact and whole rock isotope data for samples collected along transects

Sample IG-1 IG2 1G-3 1G4 IG-5 XG-10 XG-4 XG-5 XG-6
Distance from 0.000 0.095 0.195 0.364 0462 0013 0.044 0337 0.671
contact (km)

3" 0gmow (%o) 8.9 8.1 9.5 8.9 8.5 8.3 124 103 107
Dsyow (%) 94 95 -87 98 94

wt%H,0 0.3 0.4 0.4 0.3 0.4

Avg. 2Pb/*’Th 18 38 50 21 35

age (Ma)

1 o error 1 17 11 5 22

Avg. 2"Pb/*Pb 1644 1663 1633 1663
age (Ma)*

1 o error 34 43 120 23

* Used 2°7Pb/2°°Pb ages for XG samples because 2°*Pb/***Th ages not measured for XG-4.
Note: Distances of other samples from contact in km: XG-7 = 0.092, XG-1 = 0.093, XG-2 = 0.202,
XG-12 = 0 (stoped block).

not true of analysis of XG monazite and zircon, see below). However, Townsend and
others (2000) established that the primary magmatic zones yield Ireteba crystallization
ages of near ~64 Ma and patchy secondary zones with high huttonite (ThSiO,)
component yield Searchlight ages of ~16 Ma. Likewise, our EMP analyses of monazite
from sample IR1 show higher Th concentrations in secondary zones (table 3B).

1G-1 IG-2 1G-3 1G4 IG-5
10.0 -86
9.5 1 88
L 90
~ 9.0 1 _
< | g2 &
: <
2 85 g
e 04 o
(Z2e)
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|96
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SL;po : . . . -100
0.0 0.1 0.2 0.3 04 0.5

Distance from Searchlight contact (km)

Fig. 5. Ireteba granite whole rock stable isotope compositions. 3" OSMOW (left y-axis) and 8Dgyow
(r}ght y-axis) are plotted as a function of distance from the Searchlight contact. “SL” indicates the average
8" °Ogpow of two Searchlight pluton samples (Bachl and others, 2001).
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Fig. 6. Images of Ireteba monazite grains. (A) La x-ray map of grain IR1a20. (B) Th x-ray map of same
grain. (C) Backscattered electron image of grain IR1a20. (D) Backscattered electron image of grain
IR20d20. (C) and (D) are labelled with 2*Pb/?**Th IMP ages from Townsend and others (2000) and
3% 0gpow values from this study. Grain IR1a20 displays patchy zoning in secondary domain characteristic of
Ireteba monazite grains that were at the greatest paleodepths in rocks that experienced ductile deformation.

LA-ICP-MS analysis of all Ireteba samples yields a bimodal 208pp, /232Th age
distribution (table 4, fig. 7). Measured ages range from 15.1 Ma to 61.1 Ma with major
peaks at ~19 and 54 Ma. The younger age peak is close to but older than the
Searchlight crystallization age range (15.8-17.7 Ma, Faulds and others, 2002; Cates and
others, 2003; Miller and others, 2003), while the older age peak is close to but younger
than the 66 Ma age of the Ireteba granite (Kapp and others, 2002). The two age peaks
in the bimodal distribution from our samples are similar to those obtained by
Townsend and others (2000) when they included mixed analyses (labelled “all
analyses” in fig. 7). This suggests that many if not most of our analyses were mixed
analyses, particularly for the primary zones that were small and not abundant. Mixed
analyses were common because we did not use BSE images to guide our choice of
analysis spots and because our LA-ICP-MS has lower spatial resolution (spot size of 30
pm) than the IMP (15 X 20 pwm).

We used the proportion of secondary (young) monazite as a proxy for alteration
intensity. Although our choice of analysis spots was not random, samples with larger
proportions of secondary monazite resulting from more extensive alteration yielded
larger proportions of measured monazite ***Pb/***Th ages close to the 16 to 17 Ma age
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TABLE 3A

Ireteba granite monazite compositions
Sample IG-1 1G-2 1G-3 1G-4 IG-5

n 6 12 17 17 14
P,0s 278 275 299  28.1 28.7
Si0, 095 238 026 1.1 1.0
ThO, 33 3.1 2.6 43 4.8
Y,0, 1.2 1.2 1.8 2.6 2.4
La,0; 15.3 13.9 14.5 10.6 11.5
Ce,0; 307 292 297 249 266
Pr,0; 3.0 3.1 3.0 2.9 3.1
Nd,0; 10.8 11.8 11.6 12.5 12.9
Sm,0; 1.4 1.6 1.7 2.4 2.2
Gd,0; 1.0 1.1 1.3 2.2 1.9
Dy,0; 037 041 0.55 0.85 0.74
U,0; 0.11 0.10  0.05 0.13 0.16
Ca0 0.70  0.55 0.95 0.88  0.85
Fe,0; 000 002 000 000 0.0
PbO 0.00  0.03 0.02  0.03 0.03
Total 96.6 960 980  93.6  96.9

of the Searchlight pluton. As expected, the sample average ***Pb/?**Th age was lowest
for sample IG-1 closest to the contact at 17.8 Ma and increased with increasing distance
from the contact for samples IG-2 and IG-3, but then decreased to 20.8 Ma for sample

TaBLE 3B

Sample IRI1 monazite compositions

Growth zone Primary Secondary
n 11 11

Avg. lo Avg. lo
P,0s 29.3 (1.4) 287 (1.4)
SiO, 0.7 (1.e) 0.7 (0.3)
ThO, 4.1 0.8) 69 (2.2)
Y,0; 1.7 0.6) 20 (0.6)
La,0; 13.5 (1.9) 11.1 (2.2)
Ce,05 28.0 (2.2) 263 (2.1)
Pr,0; 2.8 02) 29 0.2)
Nd;O; 11.8 0.7) 124 (0.9)
Sm;0; 2.1 0.5) 2.8 (0.6)
Gd,0; 23 04) 25 0.2)
U,0; 0.2 0.5) 0.2 0.2)
CaO 1.1 (0.4) 1.1 (0.2)

Total 97.8 97.6
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TasrLE 3C

Proterozoic gneiss monazite compositions and chemical ages

Sample XG-2 XG4 XG-5 XG-6 XG-7* XG-9 XG-10 XG-11 XG-12
n 7 22 22 21 6 35 37 41 20
Avg. Age (Ma) 928 1246 1148 1274 N/A 1346 1385 1034 687
lo 390 360 451 397  N/A 332 118 366 657
P,0s 19.6 27.0 263 273 28.0 28.6 28.0 28.8 27.9
SiO, 33.7 122 141 104 33 11.8 8.6 8.3 10.2
ThO, 0.14 1.12 085 0.19 037 1.12  0.27 0.61 1.33
Y,0; 142 116 163 127 184 123 134 14.4 13.4
La,0; 223 256 27.1 285 339 262 294 29.4 27.5
Ce,03 2.01 3.19 259 347 320 3.04 3.47 3.26 3.16
Pr,0; 6.11 13.1 8.51 13.6 996 12.1 134 12.2 11.9
Nd,0; 0.51 248 1.14 1.96 096 2.14 2.05 1.82 1.89
Sm,0; 022 1.69 072 091 042 138 1.05 1.03 1.32
Gd,0; 0.02 0.16 0.08 0.06 0.03 0.13 0.07 0.09 0.14
Tb,0; 0.04 051 028 0.11 0.11 042 0.15 0.25 0.44
Dy,0; 0.04 051 028 0.11 0.11 041 0.15 0.25 0.44
Er,0; 0.00 0.08 0.07 0.01 0.03 0.10 0.02 0.05 0.12
U,0; 034 042 138 0.16 0.01 0.63 0.19 0.26 0.36
PbO 095 0.61 045 047 0.00 0.64 043 0.33 0.27
Total 100.3 100.3 100.2 100.0 98.9 101.0 100.7 101.0 100.3

* Analysis of XG-7 yielded only two meaningful ages of 7 and 81 Ma.

1G4 (fig. 8). Sample IG-5 farthest from the contact had an average monazite age lower
than in samples IG-2 and IG-3. Thus, we see no systematic dependence of monazite
alteration intensity on distance from the Searchlight contact.

We used a multi-collector IMP for in-situ measurements of oxygen isotope
compositions of monazite grains from Ireteba granite samples collected near the
Searchlight contact and dated by Townsend and others (2000). Figure 6 shows our
measured 3'%0 values and Th-Pb ages from Townsend and others (2000) for two
representative monazite grains. Although patchy secondary zones yielded younger
ages than primary magmatic zones (fig. 6C), aggregate 3'°0 values showed no
significant difference between primary and secondary zones (fig. 9). Unlike the Th-Pb
ages reported for these samples, the distribution of 3'%0 values for both primary and
secondary zones is unimodal (table 5, fig. 9). Primary and secondary zones yielded
mean 3'®*Ogy 0w values for IR1 of 7.8 permil (n = 9) versus 7.4 permil (n = 11), and for
RMCS3 of 8.3 permil (n = 7) versus 8.0 permil (n = 3). Applying a t-test showed that
there was not a statistically significant difference between primary and secondary zones
for IR1 (P = 0.14) or RMC3 (P = 0.55). Sample IR20 failed the Shapiro-Wilk normality
test but gave median values of primary and secondary zones of 8.6 permil (n = 12)
versus 9.2 permil (n = 3). Using a Mann-Whitney Rank Sum Test we found that there
was not a statistically significant difference between primary and secondary zones (P =
0.61).

Proterozoic Gneiss
Proterozoic gneiss (XG) samples have silica ranging from 60 to 75 percent (table
1). Samples XG-2 and XG-7 are metaluminous, while all other samples are peralumi-
nous. Samples are LREE-enriched, with concentrations ~200 x chondrite for LREE



362 J. C. Ayers and others—Country rock monazite response to

ZTABLE 4
Ireteba granite monazite LA-ICP-MS age data

Sample Grain # SpOt # 208Pb/232Th I 207Pb/206Pb lo 206Pb/238U 1o 207Pb/235U lo
Age (ma) error Age (Ma) error Age (Ma) error Age (Ma) error

IG-1 1 10 17.3 0.5 3198 76 23.9 0.5 120 4

IG-1 1 11 17.9 0.5 2117 142 24 1 64 5

IG-1 1 12 18.9 0.7 4367 93 59.5 2.4 525 24
1G-2 21 6 50.3 1.5 2127 249 54 2 145 18

1G-2 19 7 48.6 1.4 3192 98 41.1 1.1 203 8

1G-2 15 8 30.7 1.1 817 313 17.5 0.6 24.9 9.6
1G-2 25 9 22.7 0.7 1981 298 23.5 1.3 60.5 9.7
1G-2 18 10 58.0 1.7 3514 155 91.1 4.0 481 30
1G-2 26 11 17.7 0.6 3590 59 353 0.7 223 5

1G-3 7 43 26.2 0.8 1332 280 243 0.8 42.1 9.0
1G-3 7 44 53.6 1.0 851 211 58.7 1.4 80.6 20.1
1G-3 7 45 50 1.0 2453 204 48.7 2.0 148 14
IG-3 6 50 57.7 1.2 2808 171 85 4 291 22

1G-3 6 51 50.1 1.2 2865 157 58.8 23 239 16
1G-3 6 52 61.1 1.3 4101 77 157 5 960 34
1G-3 5 53 535 1.1 509 199 57.7 1.1 68.9 27.0
IG-3 5 54 54.5 1.1 2564 181 69.9 32 222 19
1G-3 5 55 57.7 1.3 1877 250 62.1 22 139 19
1G-3 27 60 54.2 1.1 1138 438 535 24 86.4 335
1G-3 27 61 532 1.1 2191 221 46.1 1.9 130 14
1G-3 20 62 533 1.1 1941 276 64.3 2.8 141 21

1G-3 20 63 26.0 1.2 2655 185 25.2 1.1 95.6 7.9
1G-4 1 20 24.8 0.6 608 231 43.2 1.1 55.7 213
1G-4 1 21 27.2 0.7 1191 182 22.9 0.6 38.2 5.9
1G-4 1 22 19.9 0.7 911 186 31.9 0.8 47.6 9.8
1G-4 1 23 244 0.7 2139 273 24 1 64 9

1G-4 7 24 17.5 0.5 2774 172 21.3 0.9 80.5 6.1
1G-4 7 25 20.8 0.6 2205 328 27.2 1.6 80.8 12.9
1G-4 7 30 16.1 0.5 4135 78 322 1.0 279 10
1G-4 23 32 22.8 0.5 4180 93 39.0 1.4 338 15

1G-4 25 33 17.6 0.6 2142 205 20.5 0.9 56.8 5.9
1G-4 25 34 322 0.7 781 261 253 0.8 354 11.9
1G-4 10 35 17.0 0.7 3051 214 21.6 1.3 97 8.9
1G-4 10 40 17.7 0.5 2163 205 25.6 1.0 66.9 6.8
1G-4 10 41 17.3 0.5 3240 130 24.1 0.9 122 7

1G-4 21 42 19.4 0.7 2478 163 23.5 0.9 78.2 6.0
IG-5 26 14 49.1 1.6 2560 208 67.8 2.6 206 18

1G-5 10 15 153 0.5 2867 281 19.6 1.3 85.3 10.0
1G-5 1 16 15.4 0.7 476 142 17.4 0.2 21.2 6.3
IG-5 3 17 57.8 1.7 1808 243 60.5 1.9 136 19
IG-5 33 18 56.6 1.6 2452 258 73.7 3.7 229 27
IG-5 32 19 159 0.6 2947 256 25.5 1.8 113 13

and 5-50 x chondrite for HREE (fig. 10A). They display a high field strength
element-depleted arc-like signature in Spider plots normalized to primitive mantle
(fig. 10B; Crombie, ms, 2006).

Whole rock 8'O values for the four samples of Proterozoic gneiss in the wall zone
transect range from 8.3 to 12.4 permil (table 2), significantly different from §'*O
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Fig. 7. Probability plot of Ireteba granite monazite **Pb/?**Th ages measured in this study and
Townsend and others (2000) showing a bimodal age distribution. Measured ages fall between the ages of the
Searchlight pluton (15.7 to 17.7 Ma) and the Ireteba pluton (66 Ma) because analyses overlapped age zones.

values previously obtained for middle and lower Searchlight rocks (8'*0 ~7.0%o;
Bachl and others, 2001). Peraluminous gneisses with 8'*0 > 10 permil likely had an
argillic sediment as their protolith and are therefore referred to as paragneisses. We
found no systematic dependence of 3'%0 values on distance from the contact (table 2,
fig. 11), although the anomalously low 3'®O for the sample closest to the contact may
reflect modification by the Searchlight pluton.

Results of EMP analyses of Proterozoic gneiss monazite grains are presented in
table 3C, Appendix table Al (ages) and Appendix table A2 (chemical compositions)
(EMP images with numbered sample spot locations are available at http://earth
.geology.yale.edu/~ajs/SupplementaryData/2013/02AyersEMP.pdf). Figure 12 shows
BSE images of representative monazite grains from Proterozoic gneiss country rock.
Monazite grains generally have (Th + U)/(Ca + Si) close to one, suggesting that the
huttonite and brabantite substitutions are responsible for the incorporation of Th, U,
Ca and Si. (Th + U) shows a 1:1 correlation with Si content but not Ca content,
suggesting that huttonite exchange is the primary path for Th and U to enter
monazite. As a result, concentrations of Th (fig. 12E) and Si (fig. 12F) show a strong
positive correlation with BSE intensity (fig. 12D). Townsend and others (2000) showed
the same trends in Ireteba monazite grains: secondary zones usually have higher Th
and Si concentrations than primary zones.

We used both EMP and LA-ICP-MS dating methods to obtain ages of growth zones
in monazite grains from Proterozoic gneiss samples. The samples collected from the
wall zone (XG4, XG-5, XG-6, XG-10, and XG-11) and the block in the lower
Searchlight (XG-12) all yielded monazite. Monazite grains from these samples are
mostly anhedral rounded grains 50 to 200 wm in diameter (fig. 12). BSE imaging of
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because grains contained two age populations.

monazite grains from all six samples shows a variety of zoning within each sample. Wall
zone samples contain abundant monazite grains with patchy zoning (figs. 12A, 12C,
and 12D) and less common grains with a combination of patchy and concentric zoning
(fig. 12B). The mixed-zone monazite grains typically have small concentrically zoned
cores and thick rims with patchy zoning (fig. 12B). Some monazite zones display
cross-cutting relationships suggesting veining along fractures. Sample XG-12 from the
country rock block contained only patchy zoned monazite (figs. 12A and 12C).
Relative BSE intensities of primary and secondary zones are not consistent from sample
to sample; in sample XG-12 the younger secondary zones are darker than the older
primary zones (figs. 12A and 12C) but in sample XG-6 the pattern is reversed (fig.
12B).

Samples from the roof zone contained almost no monazite. Sample XG-7, an
orthogneiss from the roof zone, produced only one monazite grain during mineral
separation. Four LA-ICP-MS analyses scattered all over the concordia diagram, but
EMP analysis yielded ages of 7 and 81 Ma (Appendix table Al). We did not recover any
monazite from samples XG-1, XG-3, XG-8, and XG-13, all augen orthogneisses from
the roof zone. Sample XG-2, an augen orthogneiss, produced only one grain that
yielded EMP ages of 412-1334 Ma (Appendix table Al).

In some samples measured ages correlate with zoning type. For example, in BSE
images of monazite from sample XG-12 (figs. 12A and 12C) dark patches are secondary
(EMP ages 14-45 Ma) and light patches are primary (EMP ages 1300-1500 Ma). In
contrast, in monazite from sample XG-11 ages do not correlate with BSE intensity,
although the youngest ages usually occur near edges of grains (fig. 12D).
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A concordia plot of LA-ICP-MS monazite analyses from all wall zone samples and
sample XG-12 defines a discordia line with intercepts of 1646 + 9 Ma and 75 = 61 Ma
(table 6, fig. 13). Samples XG-11 and XG-12 have no concordant analyses. The Unmix
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TABLE 5

Ireteba granite monazite oxygen isotope data

Sample Primary lo* Sample Secondary lo*
5" Osmow (%o) 5" Osumow (%)

IR1 7.60 0.45 IR1 7.59 0.51
IR1 8.99 0.47 IR1 6.15 0.50
IR1 8.22 0.48 IR1 7.52 0.46
IR1 7.26 0.44 IR1 7.02 0.46
IR1 7.37 0.51 IR1 6.65 0.47
IR1 8.36 0.45 IR1 7.33 0.46
IR1 7.41 0.46 IR1 7.59 0.46
IR1 7.59 0.50 IR1 7.43 0.44
IR1 7.34 0.46 IR1 8.49 0.46
IR20 8.29 0.50 IR1 7.87 0.46
IR20 9.42 0.46 IR1 7.51 0.48
IR20 8.35 0.47 IR20 10.65 0.51
IR20 8.01 0.51 IR20 7.97 0.49
IR20 8.57 0.47 IR20 9.16 0.46
IR20 7.80 0.47 RMC3 7.42 0.49
IR20 9.49 0.48 RMC3 8.85 0.47
IR20 8.39 0.44 RMC3 7.68 0.46
IR20 9.50 0.49

IR20 8.79 0.44

IR20 8.88 0.46

IR20 8.54 0.51

RMC3 8.98 0.47

RMC3 9.87 0.45

RMC3 7.93 0.46

RMC3 7.86 0.44

RMC3 8.15 0.49

RMC3 7.41 0.47

RMC3 8.13 0.49

* Error estimated by summing error from analysis (small) and the spot-to-spot error determined by
calculating the standard deviation over all analyses of standard 554 during the same analytical session.

routine and a probability density histogram of 2°’Pb/2°°Pb ages reveal a prominent
peak at 1655 = 2 Ma (1 o, 83% of analyses) corresponding to the timing of intrusion of
felsic magmas in the eastern Mojave between 1.62 and 1.69 Ga and to a metamorphic
event recorded nearby by monazite at ~1.67 Ga (Wooden and Miller, 1990; Strickland
and others, 2013; fig. 14). A probability density histogram of ***Pb/***Th ages also
yields a peak at 1655 Ma (not shown). The Unmix routine in Isoplot yields a second,
small age population of 1558 = 6 Ma (1 o, 17% of analyses).

Appendix table Al contains BSE images of grains analyzed using the RPI Cameca
SX-100 EMP. Analysis spot numbers are keyed to a table with measured chemical ages,
one sigma analytical errors, and age errors estimated using Monte Carlo analysis.
Figure 12 shows EMP analysis spot locations and ages for select Proterozoic gneiss
monazite grains. The EMP age distribution (fig. 15) is different from the LA-ICP-MS
207ph,/2%Ph age distribution (fig. 14). The main age peak is at 1412 Ma and the age
distribution skews toward younger ages. A peak at 65 Ma corresponds to the age of the
underlying Ireteba granite. Monazite grains from all samples that overlie the Ireteba
pluton (fig. 3) show age evidence of intrusion of the Ireteba granite. Ages between ~40
to 80 Ma yield a distinct age population with mean = 63.8 = 4.8 Ma (95% confidence
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Fig. 11. Proterozoic gneiss whole rock oxygen isotope compositions. 8'*Ogyon plotted as a function of
distance from the Searchlight contact. “SL” ‘indicates the average 8'"®Ogyow Of two Searchlight pluton
samples (Bachl and others, 2001).

limits), n = 13, and MSWD = 6.9 (Appendix table Al), so we conclude that a monazite
growth or recrystallization event occurred at ~65 Ma. No corresponding concordant
ages were found using LA-ICP-MS due to the very small size of the ~65 Ma age domains
(fig. 12), but the lower intercept age of 75 * 61 Ma from the LA-ICP-MS concordia
diagram (fig. 13) likely corresponds to this event. Only one analysis out of 208 analyses
yields an age within 1o of the Searchlight pluton crystallization age, so we conclude
that Searchlight intrusion and Miocene deformation did not cause the patchy zoning
in Proterozoic gneiss monazite grains.

The oldest EMP ages (<1500 Ma, fig. 15) are much younger than LA-ICP-MS
207ph /29%Ph ages that peak at 1655 Ma (fig. 14). This discrepancy cannot be due to Pb
loss, because some LA-ICP-MS analyses yield concordant ~1650 Ma ages (fig. 13), and
must be the result of a systematic error. We are confident that the LA-ICP-MS ages are
more accurate than the EMP ages because we used two different isotopic systems (U-Pb
and Th-Pb) and different standards and obtained similar results. Furthermore, our
LA-ICP-MS analyses reproduced the ages of secondary standards and of samples
previously dated using IMP (see Methods section).

Zircon grains from Proterozoic gneiss samples show concentric oscillatory and
sector zoning interpreted as magmatic (fig. 16). Zircon U-Pb ages were measured using
LA-ICP-MS on samples XG-2, XG-5, XG-6, XG-7, XG-8, XG-11, XG-12, and XG-13
(table 7). Zircon was not recovered from samples XG-10 and XG-4. Technical prob-
lems led us to throw out the data for sample XG-1. A probability plot of zircon
207ph /29%Ph ages pooled from the eight samples shows peaks at 1720 and 1035 Ma (fig.
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TABLE 6

Proterozoic gneiss monazite LA-ICP-MS age data

Analysis Sample **Pb/**Th 16 *'Pb/"*Pb 1o *Pb/”*U 1o *“’Pb/°U lo

(Ma) error (Ma) error (Ma) error (Ma) error
83 XGl0mon6 XG-10 1679 45 1659 16 1815 18 1742 24
84 XG10mon6 XG-10 1601 43 1638 46 1918 26 1786 55
85 XGl0mon3 XG-10 1623 43 1672 27 1756 19 1717 33
86 XGl0mon3 XG-10 1613 43 1676 27 1762 20 1722 33
87 XG10mon8 XG-10 1096 30 1636 24 1414 15 1504 27
88 XG10mon27 XG-10 1668 44 1680 15 1577 16 1620 22
89 XG10mon31 XG-10 1618 43 1581 44 1911 23 1757 53
990 XG10mon31XG-10 1644 44 1668 41 1921 22 1802 49
991 XG10mon30XG-10 1667 44 1613 17 1878 18 1755 25
992 XG10monl4 XG-10 1444 39 1637 24 1666 17 1653 30
993 XG10monl5XG-10 1524 41 1638 21 1794 18 1723 28
994 XG10monl9 XG-10 1632 43 1608 28 1897 20 1763 35
09 XGl10monll XG-10 1505 39 1628 23 1611 16 1624 28
10 XG10monll XG-10 1529 39 1572 23 1649 16 1620 29
11 XG10mon29 XG-10 1557 40 1665 28 1681 17 1678 33
12 XG10mon2 XG-10 1555 40 1634 30 1759 18 1706 36
13 XG10monl XG-10 1517 39 1654 29 1613 17 1633 33
14 XG10mon26 XG-10 1361 35 1661 12 1601 15 1628 19
15 XG10mon26 XG-10 1486 38 1620 18 1544 15 1577 23
16 XG10mon24 XG-10 1530 39 1721 42 1562 18 1631 44
24 XGllmonl XG-11 1232 32 1633 27 1408 15 1493 29
25 XGllmon2 XG-11 1215 31 1578 25 1269 13 1381 26

26 XGllmon3 XG-11 874 23 1598 20 1104 11 1275 20
27 XGllmon4 XG-11 1220 31 1558 14 1342 13 1418 19
28 XGllmon4 XG-11 1200 31 1583 15 1361 13 1440 19
29 XGllmon4 XG-11 786 21 1474 18 1077 11 1206 19
41 XG12monl XG-12 928 24 1679 20 901 9 1139 18
Sept180735 XG-12 679 4 1560 22 673 5 916 6
Sept180736 XG-12 436 3 1547 30 378 3 596 6
Sept180737 XG-12 549 4 1537 25 587 4 826 6
Sept180738 XG-12 1031 7 1593 22 1043 7 1236 7
Sept180740 XG-12 580 4 1633 34 629 5 898 10
Sept180741 XG-12 1089 7 1562 20 1108 8 1272 6
Sept180742 XG-12 888 6 1558 21 990 7 1184 7
Sept180743 XG-12 1023 7 1545 20 1090 8 1253 6
Sept180744 XG-12 598 4 1655 28 613 5 888 8
10 XG-4monl  XG-4 1666 7 1802 3 1740 8
11 XG-4monla XG-4 1655 9 2482 5 2057 12
13_XG-4monba XG-4 1653 10 1637 3 1644 11
15_XG-4monl0a XG-4 1705 13 1520 4 1600 13
27 XG-4mon2 XG-4 1687 13 1582 4 1628 13
28 XG-4mon2a XG-4 1664 9 1697 3 1683 10
29 XG-4monl9 XG-4 1655 8 1764 3 1715 9
30_XG-4monl9a XG-4 1645 9 1776 3 1717 10
40 XG4mon3  XG-4 1621 12 1613 4 1617 13
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TABLE 6
(continued)
Analysis Sample *®Pb/**Th 1o “’’Pb/’"*Pb 1o “*Pb/~*U lo “Pb/°U lo
(Ma) error (Ma) error (Ma) error (Ma) error
83 XG10mon6 XG-10 1679 45 1659 16 1815 18 1742 24

41 XG4mon3a XG-4 1612 11 1640 4 1628 11
42 XG4mon3b XG-4 1682 16 1551 5 1608 16
43 XG4mon5  XG-4 1643 11 1855 4 1758 13
45 XG4mon9  XG-4 1622 15 1619 5 1621 15
58 XG-5monl  XG-5 1796 79 985 15 1272 59
59_XG-5mon2  XG-5 1630 16 1684 5 1660 17
60_XG-5mon2a XG-5 1653 28 1939 10 1805 32
61_XG-5monl0 XG-5 1696 44 1533 12 1603 43

09 XG5monll XG-5 1647 44 1677 15 1659 16 1666 22
10 XG5monll XG-5 1638 43 1667 221749 18 1712 29
11 XG5monl2 XG-5 1438 38 1651 20 1603 16 1624 25
12 XG5monl2 XG-5 1449 39 1680 18 1682 16 1680 24
24 XG5mon4  XG-5 1540 41 1698 19 1705 17 1701 25
25 XG5mon5  XG-5 1664 44 1661 12 1686 16 1674 20
26 XG5mon5  XG-5 1511 40 1650 51 2166 31 1913 66
27 XG5monl9 XG-5 1645 44 1666 13 1648 16 1655 20
28 XG5monl9 XG-5 1621 43 1638 17 1601 16 1616 23
29 XG5mon6  XG-5 1612 43 1687 26 1742 18 1716 32
39 XG5mon6  XG-5 1393 37 1658 14 1766 17 1716 22
40_XG6monl0 XG-6 1623 43 1661 16 1627 16 1641 22
41 XG6monl0 XG-6 1638 44 1690 30 1550 18 1609 34
43 XG6mon23 XG-6 65 2 1647 31 1905 21 1784 39
53 XG6monl9 XG-6 798 22 1693 18 1451 15 1551 23
54 XG6ébmon6  XG-6 1676 45 1637 19 1821 18 1736 27
55 XG6ébmon6  XG-6 1475 39 1694 31 1539 18 1605 35
56_XG6bmon6  XG-6 1185 32 1680 34 1540 18 1599 37
57 XG6bmon4  XG-6 1470 39 1652 27 1638 18 1643 32
58 XG6bmon4  XG-6 1450 39 1643 16 1665 16 1654 23
68_XG6bmon7  XG-6 1551 41 1620 14 1753 17 1692 22
69_XG6bmonl  XG-6 1573 42 1684 17 1602 16 1636 23
70_XG6bmon9  XG-6 1471 39 1657 24 1683 18 1670 30
71 XG6émon9  XG-6 1431 38 1661 18 1580 16 1614 24

14). The older age corresponds to the Ivanpah orogeny of the Mojave province
(Wooden and Miller, 1990), but the significance of the 1035 Ma age is unknown.

DISCUSSION

Intrusion of the Searchlight pluton at 16 to 17 Ma led to the formation of the
extensive hydrothermal ore deposits of gold and silver that make up the historic
Searchlight mining district (Callaghan, 1939). The deposits are in the roof zone
immediately above the upper Searchlight unit, hosted by hydrothermally altered
Miocene volcanics and Precambrian gneisses that contain abundant thick quartz veins.
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Fig. 13. Concordia diagram for monazite from all Proterozoic wall zone samples and XG-12.

These features suggest that the Searchlight pluton released abundant magmatic fluid
(Faulds and others, 2002; Ludington and others, 2005; Lledo and Cline, 2008). The
pluton may also have heated overlying groundwaters and accelerated groundwater
circulation. Thus, we expected that whole rocks, monazite grains and perhaps even
zircon grains in shallow country rocks near the roof zone would provide abundant
evidence of hydrothermal alteration.

The two primary mechanisms for fluids to infiltrate country rock are porous flow,
and hydrofracturing leading to dike or vein formation. In this study we attempted to
evaluate the broader effects of porous flow rather than localized effects due to dike and
vein flow by collecting samples far removed from veins. The pervasive alteration and
the disseminated nature of the ore metals in the roof zone are consistent with porous
flow, but abundant veins suggest that hydrofracturing also occurred, implying brittle
behaviour. Quartz veins (as large as 1 m thick) are prominent along the contact of the
middle Searchlight unit and the Proterozoic wall zone rocks, and are most abundant in
the roof zone. Quartz veins are smaller and less common along the Searchlight-Ireteba
contact. We avoided these veins during sample collection to reduce the possibility of
localized fluid effects on monazite grains. However, we collected sample XG-10 close to
the contact, so the proximity of quartz veins to this sample was unavoidable.

Ireteba Granite
Ireteba granite samples show little evidence of hydrothermal alteration other than
minor sericitization of plagioclase and chlorite replacement of biotite. Deeper levels of
the pluton display a strong ductile deformational fabric.
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Fig. 14. Probability density plot of zircon 207ph /20%Ph ages for all Proterozoic gneiss samples except
XG-1 and monazite *°’Pb/?°°Pb ages for wall zone Proterozoic gneiss samples and XG-12. Text boxes
contain ages obtained by deconvolving the age spectra using the Isoplot Unmix routine (Ludwig, 2000).

Figure 6A shows that primary domains with magmatic zoning and Ireteba crystalli-
zation ages are overprinted by secondary domains with patchy zoning and ages close to
Searchlight crystallization ages. Monazite grains from all Ireteba granite samples (IG-1,
IG-2, IG-3, IG-4, and IG-5) yield ages similar to the crystallization age of the ~16 to 17
Ma Searchlight pluton. Pooled monazite ***Th-**Pb ages display a bimodal age
distribution with peaks at ~19 Ma (similar to the 16.5 Ma Searchlight age) and ~54 Ma
(fig. 7).

Although Ireteba monazite grains show two distinct age populations (fig. 7), we
observed only one population of §'*0 values in each sample (fig. 9, table 5). We believe
the ~15 to 20 wm IMP spot size gave us sufficient spatial resolution to obtain clean
analyses of primary and secondary zones (fig. 6). The spatial resolution of our IMP
3'8%0 analyses was better than for our LA-ICP-MS age measurements, which was good
enough to distinguish two age populations. If there are multiple 'O populations,
their differences are smaller than can be detected given the lo precision of *0.1
permil of our measurements.

If infiltrating fluid had induced monazite dissolution-reprecipitation, we would
expect a shift in oxygen isotope composition of secondary zones resulting from oxygen
isotope exchange with the fluid phase. That primary and secondary zones in monazite
grains show no significant difference in 8'®O composition suggests that fluids did not
cause the formation of secondary zones within Ireteba monazite grains, an interpreta-
tion consistent with whole rock oxygen isotope compositions of samples collected
along the transect into the Ireteba granite, which show no systematic changes in 8'*0
values with distance from the Searchlight contact (fig. 5).

An alternative explanation of secondary zone formation is that the fluid/rock
ratio at the time of alteration was low so that the rock buffered the composition of the



374 J. C. Ayers and others—Country rock monazite response to

60 |

1412

65 1312
201 1200

N SN

0 200 400 600 800 1000 1200 1400 1600
EMP Age (Ma)

Fig. 15. Probability density plot of Proterozoic gneiss monazite chemical ages measured using EMP.

fluid. In this case, infiltrating fluid would have been close to isotopic equilibrium with
monazite grains, and oxygen isotoge exchange during dissolution-precipitation would
not cause a significant shift in 8'°0. Magmatic fluids released from the Searchlight
pluton would have had §'®O values similar to that of the Searchlight pluton at ~7.0
permil (isotopic fractionation at such high temperatures would result in small differ-
ences). If small volumes of fluid entered the Ireteba granite, they would quickly
acquire its 80 of ~8.5 to 9 permil and be close to equilibrium with primary monazite
grains that have 8'0 of 7.8 permil. The secondary zones in IR-1 monazite grains have
an average 5'%0 of 7.4 permil, intermediate between Searchlight and Ireteba whole
rock values and close to Ireteba monazite primary values. This suggests that the Ireteba
granite could have buffered the 8'®O of the infiltrating fluids, masking the signature of
the fluid source, the Searchlight pluton. However, this would not explain the variable
whole rock oxygen isotope compositions (8.1%o to 9.5%o) that show no correlation
with distance to the contact.

Because country rocks contain much less exchangeable hydrogen than oxygen,
fluids must travel greater distances to reach hydrogen isotopic equilibrium with
unaltered host rock. Searchlight magmatic fluids would impose their hydrogen isotope
composition on country rocks near the contact. Thus, hydrogen isotopes should be an
even more sensitive indicator of alteration by externally-derived fluids than oxygen
isotopes. Although whole rock hydrogen isotope compositions of Ireteba transect
samples show variation in 8D (—87%o to —98%o), they do not show a distinct pattern
related to the Searchlight pluton (fig. 5), further supporting the interpretation that
the Searchlight pluton released little fluid into the northern margin wall rocks. Finally,
average monazite “**Ph/***Th ages of samples collected along the Ireteba granite
transect show no systematic dependence on distance from the contact (fig. 8).

None of our chemical and isotopic proxies for intensity of hydrothermal altera-
tion show a systematic spatial relationship to the Searchlight pluton. This suggests that
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Fig. 16. CL images of Proterozoic gneiss zircon grains with laser ablation pits labelled with 2**’Pb/*°Pb
ages in Ma and one sigma errors. (A) XG-8. (B) XG-12. (C) XG-2. (D) XG-11.

Searchlight-derived magmatic fluids did not alter Ireteba monazite grains and induce
the formation of the secondary zones. Hydrothermal alteration by meteoric water also
seems unlikely, since whole rocks and monazite in the wallrock do not show the
expected shift to isotopically lighter values. However, the fact remains that secondary
zones formed within Ireteba granite monazite grains at approximately the time of the
Searchlight intrusion.

In previous studies of the Ireteba granite Townsend and others (2000) and Loflin
(ms, 2002) reported that the intensity of monazite alteration (proportion of secondary
monazite) at the time of the Searchlight intrusion increased with decreasing distance
from the Searchlight contact and increasing paleodepth. However, in this study we
found that intensity of monazite alteration in the Ireteba granite does not correlate
with distance from the contact (fig. 8), which is inconsistent with alteration induced by
magmatic fluids (mechanisms 3 and 5-7 in fig. 1) or magmatic heat (mechanisms 2 or
8).

The most altered monazite grains in the studies of Townsend and others (2000)
and Loflin (ms, 2002) came from the greatest paleodepth, approximately the same
paleodepth as the Ireteba granite samples in this study. At the time of the Searchlight
intrusion those samples were at the greatest depths and highest temperatures, facilitat-
ing ductile deformation. Tectonic deformation during and after intrusion of the
Searchlight pluton led to the development of a mylonite zone in the lowermost
Searchlight and the deepest portions of the Ireteba granite. Monazite grains in Ireteba
samples that were at the greatest paleodepths (samples RMC3 and IR1, compare fig. 3)
partially recrystallized to form patchy secondary zones with Miocene ages (mechanism
9 in fig. 1, fig. 6C). In contrast, abundant veins suggest that shallower Proterozoic
gneiss samples behaved rigidly, and their monazite grains lack Miocene ages. This
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TABLE 7

Proterozoic gneiss zircon LA-ICP-MS age data

Analysis Sample pp %Py 16 PPb/APU 16 *Pb/AU  1e Th/U
(Ma) error  (Ma) error (Ma) error
Sept170724 XG-1 1543 15 156 1 284 1 0.81
Sept170723 XG-1 1467 16 170 1 296 1 1.83
Septl1 70722 XG-1 1361 17 218 1 351 2 0.85
Sept170721 XG-1 996 16 238 1 323 1 0.57
Sept170720 XG-1 1284 16 148 1 241 1 025
Sept1 70719 XG-1 1731 14 221 1 418 1
Sept1 70714 XG-1 2446 18 788 9 1369 9 045
Sept170713 XG-1 2088 18 420 5 801 7 2.38
Sept170712 XG-1 1764 23 1081 12 1334 10 047
Sept170711 XG-1 2155 18 669 8 1124 g8 1.92
Sept170709 XG-1 1935 19 602 7 970 8 0.66
Sept170708 XG-1 1912 19 636 7 998 8 054
Sept170707 XG-1 1712 19 1275 14 1448 9 0.54
Sept1 70706 XG-1 1760 24 462 5 754 8 0.18
Sept1 70705 XG-1 1703 20 623 7 914 7 0.36
Jul050759 XG-1 2179 17 739 9 1201 8 0.63
Jul050758 XG-1 1908 17 881 10 1225 9 041
Jul050757 XG-1 2174 17 627 7 1081 8 0.83
Jul050756 XG-1 2162 17 538 6 973 g8 0.62
Jul050755 XG-1 2349 17 471 6 954 7 0.79
Jul050754 XG-1 2136 18 732 9 1177 8 0.84
Jul050753 XG-1 1977 18 733 9 1116 8 1.35
Jul050752 XG-1 1930 17 1367 15 1598 10 0.87
Jul050751 XG-1 2343 17 880 10 1408 9 1.28
Sept170725 XG-1 1818 14 147 1 307 1 1.21
Sept1 70710 XG-1 1947 19 747 8 1123 8 1.65
Jul050760 XG-1 2689 16 379 5 940 7 0.72
Jul050744 XG-2 1796 27 1615 18 1695 13 044
Jul050742 XG-2 1750 30 1647 19 1693 14 0.50
Jul050741 XG-2 1710 26 1633 18 1667 13 045
Jul050740 XG-2 1751 25 1705 19 1726 13 0.51
Jul050739 XG-2 1741 31 1702 20 1720 15 0.67
Jul050738 XG-2 1716 26 1692 19 1704 13 0.37
Jul050737 XG-2 1749 26 1707 19 1726 13 0.53
Jul050736 XG-2 1713 41 1648 21 1677 19 048
Jul050735 XG-2 1700 27 1648 19 1671 13 0.33
Jul050734 XG-2 1776 25 1772 20 1775 13 0.51
Jul050733 XG-2 1714 28 1744 20 1731 14 0.54
Jul050732 XG-2 1701 25 1792 20 1751 13 049
Jul0607B112 XG-5 1824 42 1674 21 1746 20
Jul0607B113 XG-5 1750 37 1617 19 1680 17
Jul0607B114 XG-5 1793 31 1566 17 1669 15
Jul0607B115 XG-5 1684 158 1513 46 1590 71
Jul0607B116 XG-5 1747 23 1639 17 1691 12
Jul0607B117 XG-5 1777 36 1650 19 1711 17
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TABLE 7
(continued)
Analysis Sample *’Pb/’"Pb 16 *“Pb/”*U 16 *"Pb/”°U 1o Th/U
(Ma) error (Ma) error (Ma) error
Jul0607B118 XG-5 1782 24 1673 17 1726 12
Jul0607B119 XG-5 1765 26 1665 18 1714 13
Jul0607B120 XG-5 1853 33 1342 15 1557 15
Jul0607B121 XG-5 1768 38 1497 18 1617 18
Jul0607B122 XG-5 2037 35 2382 27 2206 18
Sept170740 XG-6 985 17 545 2 639 2 024
Sept1 70739 XG-6 1014 32 467 3 572 6 0.14
Sept170738 XG-6 951 88 468 7 559 18 0.12
Sept170737 XG-6 1014 21 506 2 609 4 0.11
Sept170736 XG-6 1080 17 549 2 665 3 0.20
Sept170735 XG-6 1038 17 521 2 629 3 0.52
Sept170734 XG-6 982 22 486 2 584 4 0.15
Sept170733 XG-6 1061 16 533 2 646 2 0.10
Sept170728 XG-6 1026 25 538 3 642 5 0.36
Sept170727 XG-6 993 21 544 2 640 4 0.28
Sept1 70726 XG-6 1122 18 545 2 672 3 0.15
Jul0607B67 XG-7 1107 23 444 2 569 4 0.54
Jul0607B66 XG-7 966 33 379 2 474 6 0.59
Jul0607B65 XG-7 1034 27 448 2 558 5 038
Jul0607B64 XG-7 1047 29 462 3 574 6 0.62
Jul0607B63 XG-7 995 21 468 2 569 4 049
Jul0607B62 XG-7 1019 21 469 2 575 4  0.54
Jul0607B61 XG-7 1016 37 401 3 506 7 0.49
Jul0607B60 XG-7 1053 20 450 2 563 3 0.50
Jul0607B59 XG-7 1046 20 475 2 586 3 0.60
Jul0607B088 XG-8 1837 43 1368 18 1562 19
Jul0607B087 XG-8 1750 29 1393 16 1540 13
Jul0607B086 XG-8 1817 28 1680 19 1741 14
Jul0607B085 XG-8 1775 30 1513 18 1625 14
Jul0607B084 XG-8 1731 23 1515 17 1607 12
Jul0607B083 XG-8 1698 27 1666 19 1679 13
Jul0607B082 XG-8 1762 27 1796 20 1780 14
Jul0607B081 XG-8 1815 32 1469 18 1616 15
Jul0607B080 XG-8 1745 22 1706 19 1723 12
Jul0607B079 XG-8 995 22 462 2 561 4
Jul0607B078 XG-8 995 19 463 2 562 3
Jul0607B077 XG-8 1026 24 484 2 590 5
Jul0607B076 XG-8 989 30 479 3 577 6
Jul0607B075 XG-8 1367 27 377 2 553 5
Jul0607B074 XG-8 1124 22 436 2 564 4
Sept180714 XG-11 1044 19 524 2 632 3 021
Sept180713 XG-11 951 24 503 2 592 5 0.09
Sept180712 XG-11 1017 24 434 2 539 4 041
Sept180711 XG-11 935 21 448 2 536 3 0.05
Sept180710 XG-11 965 18 394 2 489 2 0.18
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TABLE 7
(continued)
Analysis Sample *’Pb/""Pb 16 *Pb/*U 1o *Pb/°U 1o Th/U
(Ma) error  (Ma) error (Ma) error
Sept180709 XG-11 1013 15 493 2 595 2 0.03
Sept180708 XG-11 1009 16 545 2 643 2 0.03
Sept180707 XG-11 976 16 484 2 579 2 0.02
Sept180706 XG-11 971 18 462 2 558 3 0.10
Sept180705 XG-11 937 18 385 1 475 2 0.05
Sept170743 XG-11 996 20 463 2 565 3 0.20
Sept1 70742 XG-11 1310 15 568 2 743 2 0.11
Sept170741 XG-11 1750 15 742 3 1047 4 043
Jul0607B34 XG-11 1007 20 410 2 514 3022
Jul0607B47 XG-12 1660 25 1786 20 1728 13 0.63

Jul0607B46 XG-12 1701 28 1680 19 1689 14 0.50
Jul0607B45 XG-12 1707 31 1713 20 1710 15 032
Jul0607B44 XG-12 1692 25 1453 17 1553 12 0.48
Jul0607B43 XG-12 1676 25 1744 19 1713 12 0.64
Jul0607B42 XG-12 1701 26 1742 20 1723 13 051

Jul0607B41 XG-12 1058 18 492 2 605 3 046
Jul0607B40 XG-12 967 19 452 2 548 3 020
Jul0607B39 XG-12 1027 16 500 2 606 2 071
Jul0607B38 XG-12 1005 18 463 2 566 3 041
Jul0607B37 XG-12 1050 16 489 2 601 2 048
Jul0607B36 XG-12 1093 20 436 2 558 3 0.6l
Jul0607B35 XG-12 1053 21 495 2 608 4 047
Jul050781 XG-13 1689 20 1172 12 1359 9 031
Jul050779 XG-13 1665 20 1230 12 1390 9 025
Jul050778 XG-13 1638 20 1055 11 1256 8 035
Jul050776 XG-13 1670 21 1486 15 1556 10 0.34
Jul050775 XG-13 1647 21 1638 17 1634 10 0.4l
Jul050774 XG-13 1677 21 1266 13 1420 9 026
Jul050773 XG-13 1697 22 1508 16 1581 10 0.35
Jul050772 XG-13 1866 20 1353 14 1559 10 0.19
Jul050771 XG-13 1683 21 1559 16 1606 10 0.39
Jul050770 XG-13 1659 20 1415 15 1509 10 0.40
Jul050769 XG-13 1765 22 1585 17 1657 11 042
Jul050768 XG-13 1629 20 1470 16 1530 10 0.16
Jul050767 XG-13 1647 20 1333 15 1453 9 021
Jul050766 XG-13 1701 20 1347 15 1485 10 0.24
Jul050765 XG-13 1694 21 1651 18 1665 11 033

interpretation is consistent with the observations of Townsend and others (2000), who
state “Deeper levels of the Ireteba and Miocene plutons were ductilely deformed at
15-16 Ma. At shallow levels remote from the Miocene plutons, the Ireteba granite
appears to have experienced little Miocene heating and deformation . . . Irregularly
shaped patchy zones with high huttonite component (ThSiO,) are widespread in
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monazite at deep levels adjacent to Miocene plutons but less common in shallow-level
rock; monazite grains with extensive replacement generally have irregular, embayed
surfaces. In undeformed rocks distant from the Miocene plutons, monazites are less
modified and more nearly euhedral, though fine networks of replacement veins are
common and irregular rims are evident in some grains.” Our additional observations
lead us to conclude that only rocks in the Searchlight roof zone were hydrothermally
altered and contain metal ores, suggesting that hydrothermal fluids were tightly
focused in the roof zone above the brittle- to ductile transition.

Proterozoic Gneiss

Samples collected along the transect perpendicular to the Searchlight contact and
extending into the Proterozoic gneisses show no correlation between distance and
whole rock oxygen isotope composition (fig. 11). There is significant variability in
whole rock 8'®0 values in the Proterozoic gneiss wall zone distal to the contact that is
probably inherited from the protolith (10.3%o to 12.4%o, table 2), but sample XG-10 at
the contact has a whole rock 3'®O of 8.3 permil that is closer to 8'%0O values previously
obtained for middle and lower Searchlight rocks (8180 ~7.0%o0; Bachl and others,
2001), which may reflect oxygen isotope exchange associated with intrusion of the
Searchlight.

The rarity of monazite grains in roof zone samples suggests either an initial dearth
of monazite grains or destruction of pre-existing monazite grains. While all Proterozoic
gneiss samples outside of the roof zone are peraluminous and monazite-bearing,
samples XG-2 and XG-7 from the roof zone are metaluminous, which may explain why
they yielded only one monazite grain each. We did not obtain chemical analyses of
rocks that did not yield monazite, so we don’t know if the lack of monazite was a result
of them being metaluminous. Mineralogical and petrographic evidence suggest large
quantities of fluids moved through these rocks. As noted previously, at outcrop scale
Proterozoic gneisses in the roof zone host abundant quartzrich, ore-bearing veins.
Petrographic study shows that gneiss samples contain large amounts of epidote and
opaques and even some calcite, all minerals associated with hydrothermal alteration,
often concentrated in micro-veins that cut across gneissic layering. Samples XG-2 and
XG-7 have much higher CaO than other Proterozoic gneiss samples, possibly due to
the presence of secondary calcite. In addition, samples XG-3 and XG-13 directly
overlie, and XG-1 and XG-2 occur above the flank of, the Upper Searchlight unit and
beneath the highly altered Miocene volcanic sequence. The overlying Miocene volca-
nic rocks contain the vast majority of the hydrothermal ore deposits in the area. It is
likely that fluids released from the upper Searchlight unit caused much of the
alteration in the augen orthogneiss samples, particularly XG-3 and XG-13. Evidence
indicates that hydrothermal fluids were highly oxidized (Ludington and others, 2005).
They may have reacted with monazite and converted Ce®" to Ce*". Ce®" is the primary
LREE constituent of monazite, (LREE)PO,, so any reactions that consume it are likely
to affect the stability of monazite adversely. Monazite could also have simply dissolved
in magmatic fluids because magmatic fluids become acidic as they cool (Brimhall and
Crerar, 1987), and monazite is soluble in acidic fluids (Ayers and others, 2004;
Poitrasson and others, 2004). Finally, Ca metasomatism could have changed the bulk
composition of roof zone gneisses from peraluminous to metaluminous, causing
monazite to become unstable.

Monazite grains from the Proterozoic gneiss display both patchy and concentric
zoning (fig. 12). Monazite primary zones are more abundant than secondary zones
(fig. 12), so they dominate the age spectra (figs. 14-15). Figure 13 shows that many
monazite analyses are either normally or reversely discordant. Analyses showing
normal discordance may result from Pb loss or mixing of concordant age populations.
Analyses showing reverse discordance may result from uranium loss or result from
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analytical error (Hawkins and Bowring, 1997). Most discordant analyses appear to plot
on a single discordia with an upper intercept of 1646 = 9 Ma and poorly defined lower
intercept of 75 £ 61 Ma, but the high MSWD of 9.3 suggests that a single discordia
cannot explain the isotopic variation, and that there may be more than two age
populations. Most primary zone analyses plot near the upper intercept with discordia
(fig. 13).

The discordia in figure 13 may represent a mixing line between zones with
concordant ages corresponding to the upper and lower intercepts. However, that
would not explain the many monazite grains that display reverse discordance. Reverse
discordance may be a result of “mechanisms that involve exchange or fractionation of
elemental U or elemental Pb,” as suggested by Hawkins and Bowring (1997). The ~75
Ma age of the lower intercept is well within uncertainty of the age of intrusion of the
Ireteba granite at 66 Ma. Thus it is plausible that intrusion of the Ireteba granite at 66
Ma disturbed the U-Pb system in monazite grains in the Proterozoic gneiss.

The percentage of discordant analyses is large because most analyses are mixtures
of the dominant primary zones and secondary zones that are smaller than the analysis
spot (fig. 12), and 4Possibl other volumetrically minor age populations. LA-ICP-MS
analysis yields no “*’Pb/**°Pb ages <1400 Ma, presumably because none of the
secondary zones are large enough to be sampled exclusively by the 30 pum diameter
laser spot (fig. 12), so the larger, older primary zones contribute the bulk of the
radiogenic lead (table 6, fig. 13). Thus, we infer that the discordance in figure 13
primarily results from mixed analyses rather than Pb loss and that many if not all of the
primary and secondary zones are concordant or reversely discordant. Although
measured EMP ages are systematically too young (see Methods), secondary zones have
an age peak centred at 65 Ma (fig. 15) that may correspond to the ~75 Ma lower
intercept age on the concordia diagram (fig. 13) and the 66 Ma age of the Ireteba
pluton. Unlike Ireteba monazite grains, Miocene deformation and magmatism had
little effect on Proterozoic gneiss monazite grains.

The monazite upper intercept age of 1646 Ma (fig. 13) is 100 Ma younger and the
monazite **’Pb/?°°Pb age is 65 Ma younger (fig. 14) than the ~1720 Ma peak in the
zircon 2°’Pb/2%5ph age spectra (fig. 14). The monazite ages are too young to represent
the primary age of the Mojave terrane (>1.7 Ga). However, the ages may correspond
to the 1.62 to 1.69 Ga intrusion of intermediate to felsic magma into the eastern
Mojave terrane (Miller and Wooden, 1994) and agree well with a monazite metamor-
phic age of 1.67 Ga from the nearby Ivanpah Mountains in the Mojave terrane
(Strickland and others, 2013). Thus, zircon may date magmatic crystallization of the
Proterozoic gneiss protoliths, and primary zones in monazite may date a post-
crystallization metamorphic event associated either with intrusion of nearby felsic
magmas, or regional-scale metamorphism. Patchy secondary zones mostly formed in
response to intrusion of the underlying Ireteba granite at ~66 Ma.

The Proterozoic gneiss monazite grains do not show a correlation between style or
intensity of replacement zoning textures and distance from the Searchlight pluton
contact. Furthermore, average monazite ages of samples collected along the transect
show no systematic dependence on distance from the contact (fig. 17). If fluids or heat
derived from the Searchlight pluton were responsible for altering country rock
monarzite, we would expect that monazite with the highest intensity of alteration, that
is, the highest proportion of secondary zones and the youngest average ages, would be
closest to the contact, and that the intensity of alteration would decrease and average
age increase with increasing distance from the contact. However, that is not what we
observe. The Proterozoic gneiss transect provides little evidence that hydrothermal
fluids associated with intrusion of the Searchlight pluton infiltrated the wallrocks and
caused monazite grains to recrystallize.



intrusion of the Searchlight pluton, southern Nevada 381

1800

1750 A T

1700 -

XG-4 XG-6
1650 -
XG-5

b/*®Pb Age (Ma)

0. 1600 -

207

1550 -

1500 . . . .
0.0 0.2 0.4 0.6 0.8

Distance from Searchlight Contact (km)

Fig. 17. Proterozoic gneiss 2°’Ph/2°°Pb monazite ages with one sigma error bars plotted as a function of
distance from the Searchlight contact.

CONCLUSTIONS

Monazite grains from Proterozoic gneiss and Ireteba granite country rocks of the
Searchlight pluton have pervasive secondary patchy zoning. Patchy zoning in Ireteba
monazite grains developed during or shortly after intrusion of the Searchlight pluton
at ~16 to 17 Ma. Minor recrystallization of Proterozoic gneiss monazite grains led to
growth of small scattered secondary domains with ages corresponding to intrusion of
the underlying Ireteba granite, but monazite grains were mostly unaffected by the
adjacent Searchlight intrusion, suggesting that patchy zoning predated the Searchlight
pluton. None of the U-Pb ages of zircons from shallow Proterozoic gneiss samples
corresponds to the timing of the Phanerozoic intrusions.

The Searchlight country rocks do not show evidence of strong hydrothermal
alteration except in the roof zone. Rocks in the wall zone lack evidence of hydrother-
mal alteration of monazite and other minerals. In contrast, rocks in the roof zone are
intensely altered and veined and host hydrothermal ore deposits, suggesting a focused
release of fluid through the roof of the pluton. The upper Searchlight unit may have
been responsible for most of the fluid release from the pluton. This fluid, once
released, circulated through the Miocene volcanic rocks and Proterozoic gneiss in the
shallow roof zone, possibly destroying pre-existing monazite grains. However, fluids
were unable to penetrate into Proterozoic gneiss and Ireteba granite wallrocks,
perhaps because they were deeper than the brittle- to ductile transition temperature
and therefore impermeable. This prevented fluid alteration of monazite grains in
wallrocks and the development of a well-defined contact metamorphic aureole.

Evidence for fluid alteration of monazite in the Ireteba granite is cryptic at best,
with no clear shifts in whole rock hydrogen or oxygen isotope composition or in
monazite oxygen isotope composition. Evidence suggests that monazite in the Ireteba
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pluton partially recrystallized and developed patchy zoning in response to strain
associated with Searchlight intrusion or Miocene tectonic activity. Use of patchy zoning
in monazite as a diagnostic feature of hydrothermal alteration may be questionable.
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APPENDIX

TasLE Al

Monazite chemical U, Th-Pb ages measured on Cameca SX-100

383

Anal.  Sample Sample Age 1sigma MC Anal. Sample Sample Age 1sigma MC
# ID (Ma) error # 1D (Ma) error
9 xg9mon4 XG-9 13774 9.1 10.1 71 xgl1mon4 XG-11 12155 179 19.4
10 xg9mon4 XG-9 15022 119 12.8 72 xgllmon4 XG-11 1020.5 177 18.8
11 xg9mon4 XG-9 15724 148 15.6 73 xgl1mon4 XG-11  1336.0 192 207
12 xg9mon5 XG-9 15394 144 15 74 xgllmon4 XG-11 1007.2 189 19.7
13 xg9mon5 XG-9 1497.8 171 17.9 75 xgl1lmon4 XG-11 11885 15.1 16.1
14 xg9monS5 XG-9 14771 140 15.1 76 xgllmon4 XG-11  1187.0 153 16.5
15 xg9mon3 XG-9 11668 8.8 9.5 77 xgl1mon4 XG-11  1279.0 142 153
16 xg9mon2 XG-9 55.8 7.7 5.9 78 xgllmon4 XG-11 12241 147 15.7
17 xg9mon2 XG-9 13774 107 11.8 79 xgl1lmon4 XG-11 14149 132 14.1
18 xg9mon2 XG-9  1299.6 8.6 9.3 80 xgllmon4 XG-11  1396.1 124 13.4
19 xg9mon2 XG-9 14079 118 12.7 81 xgl1lmon4 XG-11 11827 109 114
20 xg9mon2 XG-9 1483.7 148 15.7 82 xgl1lmon4 XG-11 11937 113 11.9
21 xg9mon2 XG-9 1496.8 153 16.1 83 xgl1lmon4 XG-11 12785 19.0  20.0
22 xg9mon2 XG-9 63.9 1.7 1.5 84 xgllmon4 XG-11 13072 172 18.0
23 xg9mon3 XG-9 13684 104 11.7 85 xg10mon9 XG-10 940.7 6.9 7.6
24 xg9mon3 XG-9 1399.0 105 11.5 86 xg10mon9 XG-10 14152 155 16.7
25 xg9mon3 XG-9 14798 1438 15.7 87 xg10mon9 XG-10  1400.1 146 15.5
26 xg9mon3 XG-9 1490.8 145 153 88 xg10mon9 XG-10 13284 142 15.2
27 xg9mon3 XG-9 14869 177 18.9 89 xg10mon9 XG-10  1429.7 225 245
28 xg9mon3 XG-9 14883 169 18 90 xg10mon9 XG-10 14356 185 20.1
29 xg9mon3 XG-9 14304 146 15.8 91 xg10mon9 XG-10 14549 218 237
30 xg9mon3 XG-9 1295.1 146 15.8 92 xg10mon9 XG-10 14062  13.0 14.1
31 xg9mon3 XG-9 14939 149 15.7 93 xg10mon9 XG-10  1401.6  14.0 15.2
32 xg9mon9 XG-9 13185 8.8 9.7 94 xg10mon9 XG-10 14439 138 14.8
33 xg9mon9 XG-9 13058 8.7 9.5 95 xg10mon9 XG-10 14779 154 16.2
34 xg9mon9 XG-9 1353.0 10.8 12.1 96 xg10mon9 XG-10 14407 14.6 154
35 xg9mon9 XG-9 1369.6  10.8 12.1 97 xg10mon9 XG-10 14285 127 13.4
36 xg9mon9 XG-9 14904 142 15.1 98 xg10mon9 XG-10 12196 119 12.5
37 xg9mon9 XG-9 14819 136 14.1 99 xg10mon9 XG-10  1469.2 19.0 203
38 xg9mon9 XG-9 14800 163 17.4 100 xg10mon9 XG-10  1438.0 179 19.4
39 xg9mon9 XG-9 1431.8 164 17.6 101 xg10mon9 XG-10 13753 128 13.7
40 xg9mon9 XG-9 13936 14.0 14.9 102 xgl0mon10 XG-10 14415 247 267
41 xg9mon9 XG-9 14122 136 14.7 103 xgl0mon10 XG-10 13883 253 27.1
42 xg9mon9 XG-9 13835 112 12.0 104 xgl0mon10 XG-10  1456.6 199 213
43 xg9mon9 XG-9 1439.7 134 14.4 105 xgl0mon10 XG-10  1406.0 18.8  20.0
44 xgllmonl  XG-11  915.6 12.4 13 106 xgl0mon10 XG-10  1381.7 125 13.1
45 xgllmonl  XG-11 1186.0 134 14.5 107 xgl0mon10 XG-10 13921 122 12.9
46 xgllmonl  XG-11 1162.7 157 16.8 108 xgl0mon10 XG-10  1398.6 1438 15.7
47 xgllmonl ~ XG-11 11802 159 16.7 109 xgl0mon10 XG-10 14346 15.0 16.1
48 xgllmonl  XG-11 45.5 4.3 33 110 xgl0mon10 XG-10  1470.8 235 25.1
49 xgllmonl  XG-11 333 4.0 39 111 xg10monl0 XG-10  1446.1 269 28.5
50 xgllmonl  XG-11 1141.6 143 15.4 112 xg10mon8 XG-10 14693 20.0 214
51 xgllmonl  XG-11 20.0 3.0 42 113 xgl0mon8 XG-10 14063 194 209
52 xgllmon2  XG-11  1203.1 145 15.5 114 xg10mon8 XG-10  1401.6 164 17.5
53 xgllmon2  XG-11 1138.1 144 15.3 115 xgl0mon8 XG-10 13783 158 16.8
54 xgllmon2  XG-11 11555 143 153 116 xg10mon8 XG-10 14333  17.7 19.1
55 xgllmon2  XG-11  1102.9 11.8 12.6 117 xgl0mong XG-10 948.2 17.7 18.7
56 xgllmon2  XG-11  987.1 113 11.7 118 xg10mon8 XG-10 14381 182 19.4
57 xgllmon2  XG-11 12142 136 14.3 119 xgl10mon8 XG-10 14064 179 19.3
58 xgllmon2  XG-11 1121.0 134 14.1 120 xg10mon8 XG-10  1300.7 16.7 17.7
59 xgllmon2  XG-11 1087.0 127 13.2 121 xgl10mon8 XG-10 13532 175 18.5
60 xgllmon2  XG-11  954.6 12.1 12.9 122 xgl2mon2 XG-12 44.6 43 5.5
61 xgllmon3  XG-11 90.9 7.5 4.8 123 xgl12mon2 XG-12 103.1 7.1 5.4
62 xgllmon3  XG-11 4212 14.0 14.1 124 xgl12mon2 XG-12 14162 157 16.8
63 xgllmon3  XG-11  1219.7 193 209 125 xg12mon2 XG-12 1439.0 15.7 16.9
64 xgllmon3  XG-11 1065.1  18.8 20.3 126 xgl12mon2 XG-12 12460 12.0 124
65 xgllmon3  XG-11 11926 177 18.4 127 xg12mon2 XG-12 9204  10.2 10.6
66 xgllmon3  XG-11 1166.0 189 20.0 128 xgl2mon2 XG-12 14210 125 133
67 xgllmon3  XG-11  865.5 17.4 183 129 xg12mon2 XG-12 14119 126 13.7
68 xgllmon3  XG-11 1198.1 15.9 17.1 130 xgl2mon4 XG-12 54.5 5.6 4.4
69 xgllmon3  XG-11 1110.0 189 19.6 131 xgl2mon4 XG-12 79.0 6.5 4.5
70 xgllmon3  XG-11 1187.9 19.2 20.3 132 xgl2mon4 XG-12 573 5.2 5.7
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TasLE Al
(continued)

Anal.  Sample Sample Age 1sigma MC Anal. Sample Sample Age 1sigma MC

# ID (Ma) error # ID (Ma) error
133 xgl2mond  XG-12  1306.0 158 16.9 175 xg5mon3 XG-5 1227.8  12.6 13.0
134 xgl2mond  XG-12  1410.1 15.7 16.7 176 xg5mon3 XG-5 292.6 8.5 8.8
135 xgl2mon4  XG-12 13.7 0.8 0.1 177 xg5mon3 XG-5 1201.4 105 10.9
136 xgl2mon8  XG-12 32.6 32 2.6 178 xg5Smon4 XG-5 784.1 6.2 6.7
137 xgl2mon8  XG-12  47.1 4.6 4.6 179 xgSmon4 XG-5 945.2 7.1 83
138 xgl2mon8  XG-12 64.7 5.5 3.5 180 xg5mon4 XG-5 14372 245 26.7
139 xgl2mon8  XG-12 55.7 5.1 5.2 181 xgSmon4 XG-5 14159 183 19.6
140 xgl2mon8  XG-12  1299.1 115 12.4 182 xg5Smon4 XG-5 13829 175 19.1
141 xgl2mon8  XG-12 13233  11.6 12.5 183 xgSmon4 XG-5 14372 173 18.6
142 xg4mon5 XG-4 14397 157 16.9 184 xg5Smon4 XG-5 13554 16.6 18.1
143 xg4mon5 XG-4 13958 159 17.3 185 xgSmon4 XG-5 1385.6 18.1 19.4
144 xg4mon5 XG-4 14512 187 20.4 186 xg6bmon10 XG-6 1396.5 119 12.7
145 xg4mon5 XG-4 14141 19.4 20.7 187 xgbmon10 XG-6 1323.1 104 113
146 xg4monS5 XG-4 13208 9.8 11.0 188 xg6bmon10 XG-6 1388.1 159 17.2
147 xg4mon5 XG-4 10123 103 11.0 189 xg6bmon10 XG-6 1400.8  13.0 13.9
148 xg4monS XG-4 1303.5 16.6 17.8 190 xg6bmon10 XG-6 1461.5 16.6 18.0
149 xg4mon2 XG-4 12705 9.2 10.2 191 xg6mon6 XG-6 12955 107 115
150 xg4mon?2 XG-4  1296.1 9.4 10.4 192 xg6mon6 XG-6 14245 18.0 19.7
151 xg4mon?2 XG-4 14231 13.7 14.8 193 xg6bmon6 XG-6 1418.7 168 18.5
152 xg4mon?2 XG-4 14154 140 15.4 194 xg6bmon6 XG-6 1311.1 11.8 12.6
153 xg4mon2 XG-4 3424 17.1 18.3 195 xg6bmon6 XG-6 1355.6 170 18.5
154 xg4mon2 XG-4 67.7 8.9 3.7 196 xg6mon6 XG-6 14723 178 19.2
155 xg4mon7 XG-4 14753 148 16.1 197 xg6bmon6 XG-6 1381.0 129 14.1
156 xg4mon7 XG-4 13964 16.7 17.8 198 xg6mon6 XG-6 1335.6 109 11.8
157 xg4mon7 XG-4 14624 162 17.5 199 xgbmon6 XG-6 14235 15.1 16.5
158 xg4mon7 XG-4 14986 158 17.2 200 xg6mon7 XG-6 1399.7 167 183
159 xg4mon7 XG-4 13819 103 11.1 201 xgbmon7 XG-6 14729 172 18.6
160 xg4mon7 XG-4 14253 109 11.8 202 xg6mon7 XG-6 14549 177 18.8
161 xg4mon7 XG-4 11527 7.4 8.0 203 xgbmon7 XG-6 14569 163 17.6
162 xg4mon7 XG-4 11416 7.4 8.2 204 xg6mon7 XG-6 1404.7 137 14.9
163 xg4mon7 XG-4 13202 9.7 10.6 205 xg6mon7 XG-6 89.1 6.6 7.4
164 xgSmonl XG-5  1440.0 152 16.6 206 xgbmon7 XG-6 94.3 7.9 7.9
165 xgSmonl XG-5 14058 148 16.3 207 xg2monl XG-2 13341 87 9.7
166 xg5monl XG-5 13784 147 16.0 208 xg2monl XG-2 1296.2 8.7 9.6
167 xgSmonl XG-5 13822 142 15.5 209 xg2monl XG-2 12692 8.4 9.3
168 xg5Smonl XG-5 14148 125 13.4 210 xg2monl XG-2 872.8 6.5 6.9
169 xg5monl XG-5 14343 151 16.4 211 xg2monl XG-2 849.7 6.4 6.9
170 xgSmonl XG-5  1433.1 14.5 15.8 212 xg2monl XG-2 412.4 35 3.7
171 xg5mon] XG-5 10.8 0.3 0.3 213 xg2monl XG-2 460.8 33 3.6
172 xg5mon3 XG-5 68.5 1.2 1.2 214 xg7monl XG-7 6.6 2.7 10.6
173 xg5mon3 XG-5 12273 9.8 10.2 216 xg7monl XG-7 80.6 16.5 13.0
174 xgSmon3 XG-5 11947 118 12.3
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