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ABSTRACT

The Main Central Thrust shear zone is the dominant crustal thickening feature 
in the Himalayas, largely responsible for the extreme relief and mass wasting of the 
range. Along the Bhagirathi River in NW India, the Main Central Thrust is several 
kilometers thick and separates high-grade gneisses of the Greater Himalayan Crys-
tallines from Lesser Himalayan metasedimentary rocks. Th-Pb ion microprobe ages 
of monazite dated in rock thin section from the Greater Himalayan Crystallines are 
Eocene (38.0 ± 0.8 Ma) to Miocene (19.5 ± 0.3 Ma), consistent with the burial of the 
unit during imbrication of the northern Indian margin and subsequent exhumation 
due to Main Central Thrust activity, respectively. However, two samples directly 
beneath the Main Central Thrust yield 4.5 ± 1.1 Ma (T = 540 ± 25 °C and P = 700 ± 180 
MPa from coexisting assemblage) and 4.3 ± 0.1 Ma (fi ve grains) matrix monazite 
ages, suggesting Pliocene reactivation of the structure. Hydrothermal monazites at 
the base of the Main Central Thrust shear zone record Th-Pb ages of 1.0 ± 0.5 Ma 
and 0.8 ± 0.2 Ma, the youngest ever reported for the Himalayas. These ages postdate 
or overlap activity along structures closer to the Indian foreland and show that the 
zone of Indo-Asia plate convergence did not shift systematically southwestward from 
the Main Central Thrust toward the foreland during the mountain-building process. 
Instead, age data support out-of-sequence thrusting and reactivation consistent with 
critical-taper wedge models of the Himalayas.
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INTRODUCTION AND GEOLOGIC BACKGROUND

The Himalayan mountain range was created by the colli-
sion of India and Asia, which began during the Late Cretaceous 
(Figs. 1 and 2) (e.g., Yin and Harrison, 2000). The range is 
characterized by the presence of fi ve laterally continuous large-
scale structures that separate similar lithologies along its entire 
~2400 km length (e.g., Le Fort, 1996; Harrison et al., 1999; 
Upreti, 1999; Hodges, 2000). In the north, the Indus-Tsangpo 
suture zone separates Asian metasedimentary and igneous rocks 
from Indian shelf sediments (Tethys Formation) (e.g., Beck 
et al., 1996; Yin et al., 1999). The South Tibetan Detachment 
System separates the Tethys Formation from a unit of kyanite- to 
 sillimanite-grade gneisses termed the Greater Himalayan Crys-
tallines (e.g., Burg et al., 1984; Burchfi el et al., 1992). The Main 
Central Thrust separates the Greater Himalayan Crystallines 
from Middle Proterozoic phyllites, metaquartzites, and mylonitic 
augen gneisses of the Lesser Himalayan Formations (e.g., Arita, 
1983; Pêcher, 1989; Catlos et al., 2001; Martin et al., 2005). At 
most locations, rocks within the footwall of the Main Central 
Thrust show “inverted metamorphism,” an increase in metamor-
phic grade toward structurally shallower levels (e.g., Arita, 1983; 
Pêcher, 1989; Catlos et al., 2001).

Farther south, the Main Boundary Thrust juxtaposes Lesser 
Himalayan metasediments from a Neogene molasse termed 
the Siwalik Formation (e.g., Seeber et al., 1981; Valdiya, 1992; 
Meigs et al., 1995). South of the Main Boundary Thrust, the Main 
Frontal Thrust is the boundary between the Siwalik and northern 
Indo-Gangetic Plains (e.g., Lavé and Avouac, 2000). The Main 
Frontal Thrust cuts Siwalik strata in places but is also manifested 
as anticline growth (e.g., Yeats et al., 1992; Powers et al., 1998). 
These large-scale Himalayan structures sole at depth into a pres-
ently active décollement termed the Main Himalayan Thrust 
(Fig. 2) (e.g., Nelson et al., 1996; Berger et al., 2004).

In addition to these structural elements, the range is char-
acterized by roughly parallel chains of igneous intrusions 
termed the North Himalayan granites and High Himalayan 
leuco granites (Figs. 1 and 2) (e.g., Le Fort, 1986; Harris et al., 
1993;  Harrison et al., 1997). The North Himalayan granites are 
typically found as plutons within the Tethys Formation, whereas 
the High Hima layan leucogranites form a large-scale injection 
complex  throughout the structurally higher levels of the Greater 
Hima layan Crystallines, coalescing as sheet-like plutons near the 
South Tibetan Detachment System.

Numerous models for the evolution of the Himalayas 
assume that convergence between the Indian and Asian plates 

Figure 1. Generalized geological map of the Himalayas after Le Fort (1996). The box outlines the boundary of the study area in NW India. 
Names of some of the High Himalayan and North Himalayan granites are included for reference.
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was accommodated in a progressive way by large-scale thrusts 
operating at independent times during the mountain-building 
process. According to such models, subsequent to activity along 
the Indus-Tsangpo suture zone during the Late Cretaceous, the 
intracontinental Main Central Thrust initiated during the early 
Miocene (e.g., Schelling and Arita, 1991; Vannay and Steck, 
1995; Hodges et al., 1996; Stephenson et al., 2001). Zircon and 
monazite grains within the High Himalayan leucogranites yield 
early Miocene ages (e.g., Noble and Searle, 1995; Harrison 
et al., 1997; Searle et al., 1997); thus many models link their 
origin to decompression melting of the kyanite-grade forma-
tions of the Greater Himalayan Crystallines due to slip along 
the South Tibetan Detachment System (e.g., Harris et al., 1993, 
2004; Harris and Massey, 1994). After accommodating ~140–
210 km of Indo-Asia convergence (e.g., Schelling and Arita, 
1991; Srivastava and Mitra, 1994), the Main Central Thrust 
ceases activity and the Main Boundary Thrust becomes active 
during the late Miocene to Pliocene (e.g., Meigs et al., 1995; 
Brozovic and Burbank, 2000; DeCelles et al., 2001). During 
the Pliocene to present times, the Main Frontal Thrust is active 
(e.g., Yeats et al., 1992; Lavé and Avouac, 2000; Jouanne et al., 
2004). In this scenario of Himalayan construction, the Main 
Himalayan Thrust (Fig. 2) and the entire range was created by 
the successive emplacement of nappes.

Although this “in-sequence” model (Seeber and Gornitz, 
1983) has been the foundation upon which many ideas of Hima-
layan orogenesis and broader continental collision processes have 
developed (e.g., Le Fort, 1975; Searle and Rex, 1989; England 
et al., 1992; England and Molnar, 1993; Royden, 1993; Hubbard, 
1996), the idea of an inactive Main Central Thrust since the early 

Miocene has led to several questions, including its persistence 
as a prominent topographic break between the sea-level Indian 
craton and the ~5 km high Tibetan Plateau (Fielding, 1996) and 
the origin of the apparent inverted metamorphic gradient found 
in its footwall.

An alternative to the “in-sequence” model was developed 
by exploring the analog of ocean-continent collision, in which 
a topographic wedge develops between a subducting oceanic 
slab and overriding continental plate. During ocean-continent 
collision, the accretionary wedge experiences synchronous 
thrusting and out-of-sequence movement along internal struc-
tures as a means to maintain a critical taper. This “steady-state 
model” (Seeber and Gornitz, 1983) suggests that contraction 
along Himalayan faults progresses at the regional scale toward 
the foreland, but the hinterland continues to internally thicken. 
Thus, we propose that subsequent to activity along the Indus-
Tsangpo suture during the Late Cretaceous, the Main Central 
Thrust initiated during the early Miocene as a low-angle thrust 
(as low as ~7°) that accommodated ~100 km of displacement 
(see Harrison et al., 1998). In this scenario, the High Hima layan 
leucogranites were generated due to melting of the kyanite-
grade unit of Greater Himalayan Crystallines due to slip along 
the Main Himalayan Thrust, which provided a small but impor-
tant amount of heat via a shear stress of ~30 MPa (Harrison 
et al., 1998, 1999). When the Main Boundary Thrust became 
active during the late Miocene to Pliocene, the Main Central 
Thrust was deformed to a steeper angle (30°; Harrison et al., 
1998). During the Pliocene to present times, the Main Central 
Thrust, Main Boundary Thrust, Main Frontal Thrust, and Main 
Himalayan Thrust have all been active structures.

Figure 2. Three-dimensional schematic cartoon of the Himalayas based on the cross section of 
Schelling and Arita (1991).
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To test these models of Himalayan convergence, mona-
zites [(Ce, La, Th)PO

4
] were dated in rocks collected within the 

Main Central Thrust shear zone along the Bhagirathi River in 
NW India (Figs. 3 and 4). The Main Central Thrust shear zone 
in this area is a well-exposed sequence of metamorphic rocks, 
bounded by the Greater Himalayan Crystallines–Lesser Hima-
layan Formations contact at its upper level (the Vakrita Thrust, 
the local Main Central Thrust equivalent) and the Munsiari 
Thrust at its base (see also Pêcher and Scaillet, 1989; Metcalfe, 
1993; Searle et al., 1999). The “in-sequence” model predicts 
that monazite beneath the Main Central Thrust will record ages 
consistent with early Miocene movement, whereas the “steady-
state model” predicts that post–early Miocene ages are pres-
ent within the Lesser Himalayan Formations, as these rocks are 

subjected to increases in pressure and temperature (P-T) and 
fl uids, thus triggering chemical reactions and subsequent mona-
zite growth due to movement within the shear zone.

Monazite Paragenesis

Himalayan pelites and granitoids commonly contain mona-
zite as an accessory phase. Monazite is a useful U-Th-Pb geo-
chronometer (see reviews of Parrish, 1990; Harrison et al., 
2002) because it (1) incorporates signifi cant amounts of U and 
Th (Overstreet, 1967) while excluding Pb during crystallization, 
(2) sustains little radiation damage (e.g., Meldrum et al., 1998), 
and (3) is resistant to diffusive Pb loss, even at high crustal tem-
peratures (e.g., Cherniak et al., 2004). Inclusions of monazite in 

Figure 3. Sample location map of the transect taken along the Bhagirathi River. See Tables 1 and 2 
for monazite ages; GM samples were collected by Metcalfe (1993). GM74 contains monazites that 
average 5.9 ± 0.2 Ma (Catlos et al., 2002b). See Figure 1 for the location of this area relative to the 
Himalayas and Figure 4 for a cross section along A–A′. MCT—Main Central Thrust.
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garnet appear armored against dissolution/reprecipitation (e.g., 
Montel et al., 2000; Catlos et al., 2001). Garnet-bearing assem-
blages allow peak P-T conditions to be determined. When com-
bined with monazite ages, the data are a powerful means with 
which to ascertain the evolution of metamorphic terranes (e.g., 
Foster et al., 2000; Catlos et al., 2001; Gilley et al., 2003; Kohn 
et al., 2004, 2005).

Monazite appears in metapelites in the garnet or staurolite 
zones (e.g., Smith and Barreiro, 1990; Kingsbury et al., 1993; 
Catlos et al., 2001; Wing et al., 2003; Kohn and Malloy, 2004; 
Kohn et al., 2004, 2005), but regional metamorphic (i.e., non-
hydrothermal or alteration) monazite has been documented 
over a large range of temperatures from <400 °C to ~700 °C 
(Smith and Barreiro, 1990; Kingsbury et al., 1993; Franz et al., 
1996; Pyle and Spear, 1999; Ferry, 2000; Townsend et al., 2001; 
Catlos et al., 2001; Pyle et al., 2001; Wing et al., 2003; Kohn 
and  Malloy, 2004; Kohn et al., 2004, 2005). Some of this range 
refl ects different prograde and retrograde reactions that pro-
duce or consume monazite (see review by Catlos et al., 2002a), 
including the participation of other LREE (light rare earth 
element) accessory minerals such as allanite, or  dissolution/
reprecipitation  of monazite in response to major silicate reac-
tions (e.g., Pyle and Spear, 2003).

In central Nepal, a rock from the lowermost structural levels 
of the Main Central Thrust shear zone contains matrix monazite 
grains as young as 3.3 ± 0.1 Ma (1σ) (Catlos et al., 2001) and 
3.0 ± 0.2 Ma (1σ) (Kohn et al., 2004), providing support for the 
“steady-state model.” However, because the Main Central Thrust 
extends over ~2400 km along strike (Fig. 1), the possibility 

exists that this event was localized to central Nepal (Stephenson 
et al., 2001; Searle and Godin, 2003). In addition, the location 
of the young monazites within lower levels of the Main Central 
Thrust shear zone has led to speculation that their presence may 
be related to slip along thrusts associated with the Main Bound-
ary Thrust (Robinson et al., 2003). The Bhagirathi River transect 
(Fig. 3), located ~800 km west of central Nepal, is an ideal locale 
to examine the age distribution of monazite exposed within the 
Main Central Thrust footwall to address these concerns.

METHODS

Samples were collected along an ~50 km stretch of road that 
parallels the Bhagirathi River north of the town of Uttarkashi 
(Fig. 3). Monazite was dated in rock thin section using the in situ 
Th-Pb ion microprobe technique (Harrison et al., 1997; Catlos 
et al., 2001, 2002a). This approach involves cutting the monazite 
and region of interest out of the thin section with a high-precision 
saw and mounting the chip in epoxy with a block of monazite 
age standards. The method is ideal for petrologic investigations 
because the ion microprobe is nondestructive of the grain and 
its textural relationships. Analysis of small grains (~10 µm) and 
zones within larger grains is feasible, and results are available 
within a few minutes. Monazite grains were fi rst identifi ed in 
rock thin section using the Oklahoma State University JEOL 733 
electron microprobe. Most of the monazite grains dated here are 
~20–200 µm in length and are chemically zoned. Several studies 
document that chemical zones in monazite can be linked petro-
logically to a rock’s reaction history and P-T evolution (Spear 

Figure 4. Cross section of the Bhagirathi River transect; for line of section, see Figure 3. All sam-
ples are referred to as BR# in the text, except samples GM72 and GM74, which were collected by 
Metcalfe (1993).
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and Pyle, 2002; Kohn et al., 2004; Pyle et al., 2005). Monazite 
composition may vary because of several factors, including crys-
tal orientation, the transfer of elements from the breakdown of 
rare earth element (REE)–rich phases under changing P-T con-
ditions, competitive crystallization among other REE phases in 
the rock, or replacement or recrystallization of an original grain 
during metamorphism (e.g., Cressey et al., 1999; Pyle and Spear, 
1999; Zhu and O’Nions, 1999; Townsend et al., 2001; Catlos 
et al., 2002a; Kohn et al., 2004, 2005). Attempts were made to 
date specifi c chemical zones within the monazite as seen in BSE 
(backscattered electron) images; however, the small grain size 
with respect to the diameter of the ion microprobe beam pre-
cluded signifi cant interpretations in most cases.

After documentation, the region of the thin section that con-
tains the monazite was cut out and mounted in epoxy with about 
fi ve grains of monazite 554 age standards (Force, 1997), which 
have been dated at 45 ± 1 Ma by isotope dilution (Harrison et al., 
1999). An ion microprobe oxygen beam with an ~30 µm diam-
eter sputtered isotopes of Th and Pb from individual monazite 
grains. An aperture was used constrict the oval beam to a square 
shape. This is an important part of in situ analyses, as it mini-
mizes contamination from common Pb possibly found in adja-
cent grains and grain boundaries. Several spots are analyzed on 
monazite 554 grains, which are observed to fall along a line in 
ThO

2
+/Th+ versus 208Pb+/Th+ space as the analysis sessions prog-

ress (see Harrison et al., 1995; Catlos et al., 2002a, for examples). 
The precision of the ages is primarily limited by the reproduction 
of this calibration curve, which in this study had a regression (r2) 
value of 0.994, a slope of 0.115 ± 0.007 (1σ) and a ThO

2
+/Th+ 

intercept of 1.240 ± 0.143 (1σ).
Tables 1 and 2 report the monazite ages; the uncertainty 

for all ages reported here is ±1σ. In this study, the Eocene to 

early Miocene monazites yield results with approximately ±3% 
uncertainty, and the Proterozoic monazites are ±4% (see Tables 1 
and 2). The late Miocene to Pliocene ages are the most uncer-
tain, yielding an average ±18%. This may be attributed to (1) 
ThO

2
+/Th+ values that did not lie within the range defi ned by 

the calibration curve or (2) lower amounts of radiogenic 208Pb 
(208Pb*). For example, the Eocene to early Miocene and Protero-
zoic monazites were the most radiogenic (90.1 ± 0.9% and 
99.7 ± 0.04% 208Pb* respectively), but the late Miocene to Plio-
cene averaged only 44.8 ± 6.2% 208Pb*. The common Pb cor-
rection is a signifi cant factor infl uencing the precision of ages of 
monazite grains that contain low amounts of 208Pb*.

X-ray maps of Mn, Ca, Fe, and Mg were taken of a garnet 
in sample BR14 using the energy-dispersive spectrometry (EDS) 
capability of the Oklahoma State University electron microprobe. 
A current of 30 nA, beam size of ~1 µm, and count times of 30–
35 ms produced the clearest X-ray element maps. Peak P-T condi-
tions recorded by sample BR14 were estimated from mineral com-
positions via garnet-biotite thermometry (Ferry and Spear, 1978; 
 Berman, 1990) and garnet-plagioclase-biotite-muscovite  barometry 
(Hoisch, 1990) using the program GTB:  GeoThermoBarometry 
(Spear and Kohn, 2001). Other calibrations change the P-T condi-
tions by ±25 °C and ±50 MPa, which are within uncertainty of the 

TABLE 1. GREATER HIMALAYAN CRYSTALLINES MONAZITE AGES 
(BHAGIRATHI RIVER)

Grain-spot† Location‡ Th-Pb age 
(±1σ) 
(Ma)

ThO2
+/Th+

(±1σ)§

208Pb*

(±1σ) 
(%)#

208Pb+/Th+

(× 103)††

Sample BR18 (31°1.121′N, 78°2.810′E)‡‡

2-1 M 23.2 (0.6) 3.111 (0.018) 86.6 (1.0) 1.150 (0.027)
1-1 M 20.6 (0.9) 2.959 (0.035) 69.7 (2.3) 1.017 (0.046)
3-1 M 19.5 (0.3) 3.855 (0.027) 89.6 (0.9) 0.965 (0.016)
Sample BR20 (30°59.360′N, 78°41.979′E)
8-1 M 38.0 (0.8) 3.048 (0.024) 96.8 (0.2) 1.880 (0.039)
7-1 M 37.9 (0.9) 2.944 (0.014) 95.4 (0.3) 1.879 (0.044)
8-2 M 34.3 (0.8) 2.949 (0.015) 96.9 (0.2) 1.698 (0.041)
6-1 M 28.5 (0.6) 3.080 (0.015) 91.0 (0.5) 1.410 (0.028)
6-2 M 23.7 (0.6) 3.249 (0.030) 76.0 (1.5) 1.171 (0.030)
Sample BR21 (30°56.766′N, 78°41.323′E)
1-1 I 21.1 (0.5) 4.474 (0.014) 93.4 (1.0) 1.044 (0.025)
Sample BR10A (30°53.215′N, 78°40.391′E)
2-3 M 24.2 (1.2) 2.531 (0.015) 92.9 (0.9) 1.198 (0.061)
1-1 M 24.0 (0.5) 2.993 (0.013) 93.0 (0.6) 1.186 (0.026)
2-1 M 23.6 (0.3) 3.417 (0.017) 93.5 (0.5) 1.167 (0.014)
2-2 M 22.4 (0.3) 3.262 (0.010) 93.8 (0.5) 1.108 (0.014)

†Nomenclature indicates the grain and spot, respectively, of the analyzed 
monazite. See Figure 5 for BSE images of the grains. 

‡Monazite inclusion in garnet is designated as “I”, whereas “M” indicates a 
matrix grain. 

§Measured ratio in sample. Ideally, the ThO2
+/Th+ lies within the range 

defined by the standard monazite. 
#Percent radiogenically derived 208Pb. 
††Corrected sample ratio assuming 208Pb/204Pb = 39.5 ± 0.1 (Stacey and 

Kramers, 1975). 
‡‡Sample name and GPS location (see also Figs. 3 and 4). 

TABLE 2. BHAGIRATHI RIVER TRANSECT, LESSER HIMALAYAN 
MONAZITE AGES

Grain-spot† Location‡ Th-Pb age 
(±1σ) 
(Ma)

ThO2
+/Th+

(±1σ)§

208Pb*

(±1σ) 
(%)#

208Pb+/Th+

(× 103)††

Sample BR14 (30°55.280′N, 78°41.140′E)‡‡

9-1 M 6.5 (1.4) 3.930 (0.035) 32.9 (6.7) 0.324 (0.067)
8-1 M 5.4 (1.8) 5.796 (0.051) 27.6 (9.3) 0.265 (0.090)
4-1 M 4.5 (1.3) 3.277 (0.028) 21.2 (6.0) 0.222 (0.063)
3-1 M 4.4 (0.7) 3.910 (0.042) 54.7 (9.1) 0.217 (0.037)
1-1 M 4.2 (0.8) 3.457 (0.038) 29.9 (5.9) 0.208 (0.041)
2-1 M 3.8 (0.5) 3.446 (0.030) 39.8 (5.2) 0.190 (0.025)
2-2 M 3.6 (0.9) 3.160 (0.022) 35.8 (8.4) 0.180 (0.042)
7-1 M 3.6 (0.8) 4.097 (0.021) 35.9 (7.5) 0.179 (0.038)
Sample BR29 (30°52.996′N, 78°39.990′E)
1-1 M 1532 (12) 3.435 (0.008) 99.9 (0.01) 78.72 (0.637)
1-2 M 43.7 (2.3) 3.049 (0.005) 93.1 (0.6) 2.163 (0.113)
1-4 M 9.9 (0.6) 2.694 (0.004) 68.9 (1.8) 0.488 (0.029)
1-3 M 8.4 (0.3) 3.151 (0.007) 57.3 (1.5) 0.416 (0.013)
1b-1 M 4.8 (0.2) 3.258 (0.010) 69.8 (3.2) 0.239 (0.012)
4-2 M 4.3 (0.1) 3.688 (0.009) 79.7 (2.3) 0.213 (0.007)
5-2 M 4.2 (0.1) 3.542 (0.015) 81.2 (2.4) 0.208 (0.007)
4-1 M 4.1 (0.2) 3.763 (0.008) 73.8 (3.0) 0.205 (0.009)
5-1 M 4.1 (0.1) 3.655 (0.006) 75.2 (2.6) 0.201 (0.007)
Sample BR08 (30°53.427′N, 78°40.352′E)
1-1 M 2318 (276) 2.004 (0.030) 99.9 (0.01) 121.5 (15.32)
Sample BR33A (30°49.779′N, 78°37.448′E)
6-1 M 1697 (13) 3.439 (0.012) 99.9 (0.01) 87.61 (0.72)
5-1 M 1472 (39) 2.848 (0.011) 99.9 (0.01) 75.52 (2.05)
4-1 M 1341 (13) 3.333 (0.010) 99.9 (0.01) 68.61 (0.67)
Sample BR42 (30°46.235′N, 78°35.849′E)
1-1 M 443 (31) 2.312 (0.014) 98.4 (0.1) 22.14 (1.58)
2-1 M 8.7 (1.0) 2.870 (0.008) 24.8 (2.8) 0.430 (0.051)
4-1 M 2.6 (0.7) 3.260 (0.011) 16.2 (4.1) 0.131 (0.034)
Sample BR43A (30°46.235′N, 78°35.849′E)
1-1 M 1.0 (0.5) 2.936 (0.036) 18.1 (9.9) 0.049 (0.027)
2-1 M 0.8 (0.2) 2.561 (0.011) 29.7 (9.0) 0.038 (0.012)

†Nomenclature indicates the grain and spot, respectively, of the analyzed 
monazite. See Figures 7, 9, 10, and 11 for BSE images of the grains. 

‡“M” indicates a matrix grain. 
§Measured ratio in sample. Ideally, the ThO2

+/Th+ lies within the range 
defined by the standard monazite. 

#Percent radiogenically derived 208Pb. 
††Corrected sample ratio assuming 208Pb/204Pb = 39.5 ± 0.1 (Stacey and 

Kramers, 1975). 
‡‡Sample name and GPS location (see also Figs. 3 and 4). 
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result. The compositions of garnet at the lowest spessartine and 
lowest Fe/(Fe + Mg) values and matrix muscovite, plagioclase, and 
biotite were quantitatively obtained using the electron microprobe 
operating at an accelerating potential of 20 kV and a probe current 
of ~25 nA (Table 3). Plagioclase grains have an anorthosite content 
of 25 ± 2%. P-T conditions were determined for each composition 
in Table 3 and averaged. For compositional analyses, maximum 
count times were 20 s for each spot, and raw data were reduced 
using the PAP matrix correction.

RESULTS

Greater Himalayan Crystallines

Samples BR10A, BR18, BR20, and BR21 were collected 
from the Greater Himalayan Crystallines (Figs. 3 and 4; Table 1), 
a unit of garnet-bearing gneisses. Sample BR10A is classifi ed as 
a Greater Himalayan rock based on lithology, fi eld observations 
(see also Pêcher and Scaillet, 1989; Metcalfe, 1993), and monazite 
ages (average = 23.6 ± 0.7 Ma). These samples all contain rounded 
or fl attened garnet + biotite + muscovite + plagioclase + chlorite 
+ zircon + monazite + quartz + ilmenite (Fig. 5). Monazites in 
these rocks range from Eocene (38.0 ± 0.8 Ma; sample BR20) to 
Miocene (19.5 ± 0.3 Ma; sample BR18). The Eocene-Oligocene 
ages are consistent with a phase of Barrovian metamorphism of 
the Greater Himalayan Crystallines termed the Eohimalayan Event 
(e.g., Metcalfe, 1993; Hodges et al., 1996; Le Fort, 1996; Wies-
mayr and Grasemann, 2002). The Miocene ages can be correlated 
to timing movement within the Main Central Thrust slip in a broad 
sense (e.g., Schelling and Arita, 1991; Vannay and Steck, 1995; 
Hodges et al., 1996; Stephenson et al., 2001).

Along the Bhagirathi River transect, a “late brittle structure” 
(termed the Jhala fault) has been reported to separate quartzo-
feldspathic sillimanite-grade gneisses from metasediments with 
bands of K-feldspar augen gneisses near the town of Jhala (Met-
calfe, 1993; Searle et al., 1999). However, no change in structure 
or lithology is observed near the town of Jhala (Fig. 6), which 
is surrounded by homoclinally north-dipping garnet-bearing 
gneisses. Although the fault has been mapped within the silli-
manite zone, rocks sampled across the supposed structure only 
reached kyanite-grade P-T conditions (e.g., 600 ± 40 °C and 
8.5 ± 1.2 kbar to the north, and 600 ± 40 °C and 8.9 ± 1.3 kbar to 
the south) (Metcalfe, 1993). In addition, these rocks yield similar 
Oligocene-Miocene mica ages (20.8 ± 0.6 Ma to the north and 
21.1 ± 0.6 Ma to the south) (Metcalfe, 1993). Sample BR18 was 
collected near the town of Jhala (Fig. 6) and contains monazites 
that are similar in age to those at structurally lower levels.

Lesser Himalayan Formations

Monazites dated in the Lesser Himalayan Formations were 
only found in the matrix of the rock (Table 2). Matrix monazite 
grains present unique problems in the interpretation of their ages 
because they can be subjected to reactions during retrogression 
and/or subsequent metamorphism (e.g., Catlos et al., 2002a). 
Several studies document partial melting reactions that dissolve 
earlier-formed monazite and subsequent melt crystallization that 
reforms it (e.g., Pyle and Spear, 1999, 2003; Kohn et al., 2004, 
2005). Thus, a high-temperature rock may have different genera-
tions of monazite that formed at lower temperature (the original 
“monazite-in”), and others that refl ect later reactions at higher 
temperature. Lower-temperature alteration can also cause mona-
zite dissolution/reprecipitation. This has been documented both 
in contact metamorphic settings (e.g., Townsend et al., 2001) and 
in late-stage fractures in high-grade metamorphic rocks (e.g., 
Kohn et al., 2004, 2005). However, as explained below, the tex-
tural relationships of the monazite being dated can help evaluate 
the presence of these reactions. In addition, the ability to date 
multiple grains in a single sample can evaluate for the presence 
of these potentially fl uid-mediated reactions in terms of hetero-
geneous age distributions.

Samples BR14 and BR29 were collected from the footwall 
of the Main Central Thrust, less than 1 km beneath the Greater 
Himalayan Crystallines (Figs. 3 and 4). Figure 7 shows BSE 
images of monazites found in BR14, which has euhedral garnets 
and ilmenite inclusions that extend into the matrix. Matrix mona-
zites are aligned with the overall fabric of the rock defi ned the 
chlorite, biotite, and ilmenite grains (Fig. 7). Eight BR14 matrix 
monazites yield an average age of 4.5 ± 1.1 Ma with a Mean 
Square Weighted Deviation (MSWD) of 0.8, consistent with a 
single population (Table 2).

X-ray element maps and a compositional traverse show 
that the garnet preserves prograde zoning and experienced 
minimal diffusional modifi cation or retrogression (Fig. 8). The 
P-T conditions recorded by sample BR14 are 540 ± 25 °C and 

TABLE 3. MINERAL COMPOSITIONS USED TO GENERATE BR14 
P-T CONDITIONS 

 Garnet Garnet Biotite Plagioclase Plagioclase Muscovite
SiO2 37.5 37.6 41.1 62.9 64.0 48.7 
Al2O3 20.3 20.3 27.5 23.1 22.8 33.9 
MnO 0.49 0.91 0.08 <0.01 0.03 0.02 
MgO 1.67 1.76 4.53 0.01 0.01 0.78 
CaO 3.12 2.86 <0.01 4.84 4.35 0.01 
Na2O <0.01 0.01 0.86 8.33 8.66 1.31 
FeO 36.9 36.1 12.5 0.06 0.01 1.28 
TiO2 0.02 0.13 1.09 <0.01 <0.01 0.29 
Cr2O3 0.04 <0.01 <0.01 <0.01 0.06 0.02 
K2O nm nm 8.20 0.07 0.08 8.86 
Total 100.0 99.8 95.8 99.2 100.0 95.2 
Si 3.04 3.05 5.80 2.80 2.82 6.42 
Al 1.94 1.94 4.58 1.21 1.19 5.26 
Mn 0.03 0.06 0.01 <0.01 <0.01 0.00 
Mg 0.20 0.21 0.95 <0.01 <0.01 0.15 
Ca 0.27 0.25 <0.01 0.23 0.21 0.00 
Na <0.01 <0.01 0.24 0.72 0.74 0.33 
Fe 2.50 2.45 1.47 <0.01 <0.01 0.14 
Ti <0.01 0.01 0.12 <0.01 <0.01 0.03 
Cr <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
K nm nm 1.48 <0.01 <0.01 1.49 
Total 8.0 8.0 14.6 5.0 5.0 13.8 
   Note: The oxides are reported in weight percent, whereas the cations 
are reported as atoms per formula unit. Garnet analyses were taken at 
the lowest Mn and Fe/Fe + Mg values. Matrix plagioclase, biotite, and 
muscovite analyses were taken in close proximity to garnet. Two 
plagioclase analyses of differing Ca content were used in the 
thermobarometric calculations. nm—not measured. 
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700 ± 180 MPa (Table 3). These estimates are consistent with 
the sample’s mineral assemblage, prograde garnet X-ray ele-
ment maps (Fig. 8), and the P-T conditions of rocks collected 
nearby (see Metcalfe, 1993). If we assume that these monazites 
formed under a geobaric gradient of 0.035 km/MPa and fol-
lowed the presently dipping 48°NE ramp observed in the fi eld, 
this rock exhumed at a rapid rate of ~7 mm/yr [(0.035 km/MPa 
× 700 MPa) / (4.5 m.y. × sin 48°)]. Although this rate is highly 
uncertain due to the diffi culty in estimating the parameters neces-
sary in this calculation, the minimum exhumation rate (vertical) 
is 4.5 mm/yr because of the calculated depth with age. The pres-
ence of such young monazite ages in a high-grade metamorphic 

rock located directly beneath the Main Central Thrust indicates 
the structure must have been active at this time.

Sample BR29 (collected at similar structural levels as 
 sample BR14) contains three ~100 µm long monazite grains that 
yield 4.8 ± 0.2 Ma to 4.1 ± 0.1 Ma (Table 2; Fig. 9). The Pliocene 
grains are found adjacent to or as inclusions within large bio-
tite grains that parallel the overall foliation of the sample. BR29 
also contains a large ~500 µm long monazite inclusion in biotite 
that appears sector-zoned in BSE and has a 1532 ± 12 Ma core. 
Several workers report the presence of Early to Middle Protero-
zoic ages within the Lesser Himalayan Formations (e.g., Ahmad 
et al., 1999; Miller et al., 2000; Sarkar et al., 2000; Catlos et al., 

Figure 5. Backscattered electron (BSE) 
images of Greater Himalayan Crystallines 
samples BR18, BR21, and BR10A. Dated 
monazites (±1σ) are circled; see Table 1 
for details. bt—biotite; chl—chlorite; 
grt—garnet; mus—muscovite; plag—pla-
gioclase; qtz—quartz; zr—zircon.
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2002b) and suggest the ages refl ect tectonic or magmatic events 
related to or older than the assembly of India. Several structurally 
lower samples contain Early to Middle Proterozoic monazites 
(BR08, BR33A; Fig. 10), indicating that monazite was present 
in the Lesser Himalayan Formations prior to Indo-Asia collision. 
These older monazite grains may have been the reactant material 
for subsequent monazite precipitation during the Pliocene.

The BR29 grain has a core that appears darker than its outer 
rim in BSE, and contains bright ~1 µm inclusions of  thorite 
(Fig. 9). In this case, the ion microprobe could be positioned 
to avoid the thorite inclusions and analyze brighter and darker 
regions of the grain. Two spots on the darker region yield ages of 
1532 ± 12 Ma and 43.7 ± 2.3 Ma, indicating that the Th-Pb iso-
topic systematics of monazite may not be refl ected by its whole-
mineral chemistry as revealed by BSE. The chemical compo-
sition of this monazite grain, which is qualitatively indicated 
as changes in brightness in the BSE image, may be pri marily 
controlled by its crystal orienta tion (e.g., Cressey et al., 1999) 
or other factors (see Catlos et al., 2002a). Ages of the grain that 
range from 43.7 ± 2.3 Ma to 8.4 ± 0.3 Ma (Table 2; Fig. 9) may 
not be signifi cant tectonically, instead representing mixing of the 
older ca. 1532 Ma core and younger ca. 4 Ma event.

The presence of the Pliocene monazite grains in sample 
BR29 lends support for the hypothesis that a tectonic event 
occurred in the footwall of the Main Central Thrust during this 
time, as suggested by the monazites dated in sample BR14. In 
addition, Catlos et al. (2002b) report 5.9 ± 0.2 Ma (MSWD = 
0.4) ages of matrix monazite grains collected near sample BR29 
(sample GM74; Figs. 3 and 4), which also provide support for 
late  Miocene–Pliocene Main Central Thrust activity directly 

Figure 6. Field shot of the homoclinally dipping Greater Himalayan 
Crystallines exposed near the town of Jhala. The location of sample 
BR18 is indicated with average monazite age (±1σ).

Figure 7. (A) Cartoon of sample BR14 
euhedral garnet, ilmenite grains, and 
monazite (circled). See Figure 8 for 
X-ray element maps and a composi-
tional transect across this garnet. (B) 
BSE image of the same region; monazite 
ages are ±1σ. (C) BSE image of another 
region of sample BR14, with monazite 
ages indicated. See Table 2 for analysis 
details. apt—apatite; bt—biotite; chl—
chlorite; grt—garnet; ilm—ilmenite ; 
qtz—quartz.



Figure 8. X-ray element maps of the BR14 garnet in Mn (A), Ca (B), Mg (C), and Fe (D). The arrow 
shows the location of the compositional traverse (E) from rim to rim of the BR14 garnet. FM—
Fe/(Fe + Mg); Alm—almandine; Grs—grossular; Prp—pyrope; Sps—spessartine; X—mole fraction. 
Tick marks on the spessartine profi le show the position of each analysis.
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beneath the structure in this area. Although this rock did not con-
tain garnet, a sample close by yields 500 ± 40 °C and 700 ± 200 
MPa (sample GM72; Metcalfe, 1993), within uncertainty of the 
P-T conditions of sample BR14.

Samples BR42 and BR43A were collected from the base of 
the Main Central Thrust shear zone within the Munsiari Thrust 
(Figs. 3, 4, and 11). These rocks contain chlorite + muscovite 
+ monazite + iron oxides and appear to be hydrothermally pro-
duced or altered. BR42 contains monazites that range in age from 
443 ± 31 Ma to 2.6 ± 0.7 Ma. The Ordovician age may represent 
a monazite grain from a Lesser Himalayan granite (e.g., Valdiya, 
1995; Islam et al., 1999) or partial dissolution and subsequent 
resetting of a Proterozoic monazite. The Pliocene monazite grain 
in sample BR42, along with monazites in sample BR43A that 
are 1.0 ± 0.5 Ma and 0.8 ± 0.2 Ma, are the youngest monazites 

ever reported from the Himalayas. These grains are in close asso-
ciation with iron oxides in a muscovite-rich vein, indicating a 
hydrothermal origin.

DISCUSSION

The presence of two samples directly beneath the Main 
Central Thrust in the Bhagirathi River region of NW India that 
contain matrix monazite grains that are 4.5 ± 1.1 Ma (T = 540 ± 
25 °C, P = 700 ± 180 MPa) and 4.3 ± 0.1 Ma (fi ve grains) is 
 categorically indicative of metamorphism within the Main Cen-
tral Thrust shear zone during the Pliocene. We interpret that a 
phase of motion occurred along the structure itself during this 
time. Although the magnitude of displacement is highly uncertain 
due to the diffi culty in estimating the parameters necessary in the 

Figure 9. BSE images of monazites in Lesser Himalayan sample BR29. Dated monazites (±1σ) are circled; see Table 2 for details.



Figure 10. BSE images of monazites in Lesser Himalayan samples BR08 and BR33A. Dated monazites (±1σ) are circled; see Table 2 for details. 
These monazite grains are located within large allanite grains.

Figure 11. BSE images of monazites in Lesser Himalayan samples BR42 and BR43A. Dated monazites (±1σ) are circled; see Table 2 for details. 
Minerals in this rock include chlorite, iron oxides, and muscovite.
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calculations, this rock may have traveled ~33 km toward the sur-
face since the Pliocene [(0.035 km/MPa × 700 MPa) / sin (48°)]. 
This magnitude is a signifi cant component (15%–24%) of the 
overall total displacement estimated for the Main Central Thrust 
of ~140–210 km from structural studies (see Schelling and Arita, 
1991; Srivastava and Mitra, 1994).

These samples that contain the Pliocene monazite grains 
are located just south of a hanging-wall rock that contains a 
21.1 ± 0.5 Ma monazite inclusion in garnet (Fig. 5). The result, 
in combination with observations of Pliocene monazite ages 
in central Nepal and late Miocene monazite ages in eastern 
Nepal (Fig. 12) (Catlos et al., 2001, 2002b; Kohn et al., 2004), 
indicates that modeling the Himalayas as a region where plate 
convergence shifts solely toward the foreland is an oversimpli-
fi cation (i.e., the “in-sequence” model). Contraction progressed 
regionally toward the foreland, but the hinterland continued 
to thicken internally, as predicted by the “steady-state model” 
(Seeber and Gornitz, 1983).

In central Nepal, monazite ages show a trend from ca. 20–
15 Ma at the Greater Himalaya–Lesser Himalaya Formations 
contact (= Main Central Thrust sensu stricto), to ca. 7–3 Ma at the 
base of the shear zone (Fig. 12) (Catlos et al., 2001). The apparent 
younging of ages from north to south led to the idea that the shear 
zone can be modeled as the systematic emplacement of thrust 
sheets within a duplex (Robinson et al., 2003; Kohn et al., 2004). 
In this model, the Lesser Himalayan Duplex contains stratigraph-
ically, chronologically, and metamorphically distinctive thrust 
packages below the Greater Himalaya–Lesser Himalaya Forma-
tions contact (see DeCelles et al., 1998, 2001, 2002; Robinson 
et al., 2003; Kohn et al., 2004). Within the duplex, the Ramgahr 
Thrust and other structures located south of the contact accom-

modate convergence after the Main Central Thrust ceases move-
ment in the early Miocene. Deformation shifts sys tematically to 
these other structurally lower thrusts with movement documented 
as late as ca. 3 Ma in central Nepal (Catlos  et al., 2001; Robin-
son et al., 2003; Kohn et al., 2004). The amount of convergence 
accommodated by the Lesser Himalayan Duplex is estimated 
by fi eld observations as well as geochemical analyses of rocks 
within each individual thrust, which can be lithologically, chemi-
cally, and chronologically mapped (see Kohn et al., 2004). This 
model is opposed to the idea that the Main Central Thrust shear 
zone is a broad zone of diffuse deformation that extends for many 
kilometers above and below the contact.

The distribution of monazite ages within the Lesser Hima-
layan Formations along the Bhagirathi River suggest that the 
duplex in NW India, if it exists, developed from ca. 4 to ca. 1 Ma, 
versus from ca. 15 to ca. 3 Ma in central Nepal. However, this 
observation is contingent on the ca. 1 Ma monazite grains timing 
movement within the Munsiari Thrust, and active hydrothermal 
systems are commonly located within the Main Central Thrust 
shear zone (e.g., Evans et al., 2001).

In the Everest region of Nepal and the Sikkim region of 
NE India, Main Central Thrust shear zone monazite grains yield 
ages as young as 10.3 ± 0.8 Ma and 10.5 ± 0.6 Ma, respectively 
( Catlos et al., 2002b; Catlos et al., 2004). Searle and Godin (2003) 
argue that the wide range of ages along and across Main Central 
Thrust strike is evidence that the structure has not experienced 
movement since the early Miocene, and instead refl ects monazite 
retrogression, growth over widely differing temperature ranges, 
and/or inheritance. Although monazite in the matrix of a sample 
can be affected by subsequent metamorphism and retrogres-
sion, many of the ages shown in Figure 12 are from inclusions 

Figure 12. Approximate average monazite ages roughly plotted against structural distance from the Main Central Thrust (MCT) (from Catlos 
et al., 2001, 2002b, 2004). Shaded area signifi es the start of the Pliocene (ca. 5.4 Ma).
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in garnet  and are consistent with a single population (see Catlos 
et al., 2001, 2002b, 2004). We argue that the observed distribu-
tion of monazite ages is evidence that Main Central Thrust shear 
zone moved at temporally distinct times along strike.

Because of the striking lateral continuity of Himalayan lithol-
ogies (Fig. 1), the widespread presence of Oligocene-Miocene  
metamorphism recorded by the Greater Himalayan Crystallines 
(see review by Guillot et al., 1999), as well as the remarkable 
consistency of emplacement times of the High Himalayan and 
North Himalayan granites (see review by Harrison et al., 1998, 
1999), an expectation arises that processes operating in NW 
Indian Himalayas should be temporally similar to those occur-
ring in the range in Nepal and NE India. The span of monazite 
ages across Main Central Thrust strike and lack of Pliocene ages 
in eastern Nepal and the Sikkim region could refl ect changing 
boundary conditions controlling the mechanics of Indo-Asia col-
lision since the early Miocene. Extrusion along left-lateral strike-
slip faults north of the Himalayas (Fig. 13) (e.g., Tapponnier 
et al., 1982, 2001) may have accommodated convergence and 
affected the partitioning of strain within the Himalayas, which is 
refl ected in the timing of metamorphism within the Main Central 
Thrust shear zone.

Main Central Thrust movement during the Pliocene would 
signifi cantly change the slope of the Himalayas, resulting in a 

rapid increase of erosion. Evidence for this increase are found in 
paleosols from a sedimentary section south of the Bhagirathi River 
transect exposed along the Somb River in Himachal Himalayas. 
Stable isotopes of carbon, oxygen, and hydrogen and Sr isotopic 
ratios from this section yielded results consistent with increased 
weathering and high rainfall at ca. 4 Ma (Ghosh et al., 2004).

The persistence of the Main Central Thrust as a prominent 
topographic break indicates that the structure continues to play 
an important role in controlling mass movement and deformation 
(Hodges et al., 2004). Seismicity in close proximity to the Main 
Central Thrust in NW India includes the 1999 Chamoli (Ms = 6.6) 
(Sarkar et al., 2001) and 1991 Uttarkashi earthquakes (mb = 6.6) 
(Kayal, 1996) as well as historical magnitude 5–7 earthquakes 
(Badrinath 1803, Gangotri 1816, Mussoorie 1865) (Oldham, 
1883). These earthquakes were located between the Main Central 
Thrust and the Main Boundary Thrust within a clearly identifi -
able ~50 km wide zone of predominately moderate (5 ≤ mb ≤ 6) 
earthquakes termed the Main Himalayan Seismic Zone (Ni and 
Barazangi, 1984). Seismic activity in this zone has been linked to 
the underthrusting of the Lesser Himalayan Formations beneath 
the Greater Himalayan Crystallines, and supports the hypothesis 
that the Main Central Thrust shear zone is presently active in NW 
India (Sarkar et al., 2001; Virk and Walia, 2001).
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