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The Himalaya is a natural laboratory for studying mountain-building processes. Concepts of extrusion and duplexing have
been proposed to dominate most phases of Himalayan evolution. Here, we examine the importance of these mechanisms for
the evolution of the Himalayan crystalline core via an integrated investigation across the northern Kathmandu Nappe.
Results reveal that a primarily top-to-the-north shear zone, the Galchi shear zone, occurs structurally above and intersects at
depth with the Main Central thrust (MCT) along the northern flank of the synformal Kathmandu Nappe. Quartz c-axis
fabrics confirm top-to-the-north shearing in the Galchi shear zone and yield a right-way-up deformation temperature field
gradient. U-Pb zircon dating of pre-to-syn- and post-kinematic leucogranites demonstrates that the Galchi shear zone was
active between 23.1 and 18.8 Ma and ceased activity before 18.8–13.8 Ma. The Galchi shear zone is correlated to the South
Tibet detachment (STD) via consistent structural fabrics, lithologies, metamorphism, and timing for four transects across the
northern margin of the Kathmandu Nappe. These findings are synthesized with literature results to demonstrate (1) the broad
horizontality of the STD during motion and (2) the presence of the MCT-STD branch line along the Himalayan arc. The
branch line indicates that the crystalline core was emplaced at depth via tectonic wedging and/or channel tunnelling-type
deformation. We proceed to consider implications for the internal development of the crystalline core, particularly in the light
of discovered tectonic discontinuities therein. We demonstrate the possibility that the entire crystalline core may have been
developed via duplexing without significant channel tunnelling, thereby providing a new end-member model. This concept
is represented in a reconstruction showing Himalayan mountain-building via duplexing from the Oligocene to Present.

Keywords: Himalayan orogen; Kathmandu Nappe; duplexing; extrusion

1. Introduction

The Himalaya (Figure 1) is one of the best natural labora-
tories for studying mountain-building processes. Extrusion
and duplexing processes are invoked to address a series of
Himalayan tectonic questions, including how ongoing
mountain-building proceeds, and how the crystalline core
developed and was emplaced (e.g. McElroy et al. 1990;
Hodges et al. 2004; Webb et al. 2007; Herman et al. 2010;
Martin et al. 2010; Corrie and Kohn 2011). In these
contexts, extrusion involves exhumation from the middle
crust of the over-riding plate to the surface between sur-
face-breaching faults, commonly between an out-of-
sequence thrust fault and a structurally higher normal
fault, whereas duplexing involves basal accretion of mate-
rial from the underthrusting Indian plate to the over-riding
orogen. Models to explain the thermo-kinematic evolution
from the late Miocene to Present generally involve either
extrusion via out-of-sequence thrusting with or without
structurally higher normal faulting (e.g. Harrison et al.
1997, 1998; Upreti and Le Fort 1999; Catlos et al. 2001,

2004; Hodges et al. 2001, 2004; Hurtado et al. 2001;
Johnson et al. 2001; Wobus et al. 2003, 2005; Thiede
et al. 2004; McDermott et al. 2013) or duplex develop-
ment above a ramp in the sole thrust at mid-crust depth
(e.g. DeCelles et al. 2001; Robinson et al. 2003; Bollinger
et al. 2004, 2006; Konstantinovskaia and Malavieille
2005; Avouac 2007; Bhattacharyya and Mitra 2009;
Herman et al. 2010; Long et al. 2011; Grandin et al.
2012; Adams et al. 2013; Webb 2013). Early to middle
Miocene emplacement of the crystalline core has long
been understood in the context of extrusion to the surface
between the Main Central thrust (MCT) and South Tibet
detachment (STD) (Figure 2A and B) (e.g. Caby and Le
Fort 1983; Burg et al. 1984; Burchfiel and Royden 1985;
Burchfiel et al. 1992; Hodges et al. 1992, 2001; Beaumont
et al. 2001, 2004). However, over the past ~13 years,
duplexing models have been considered for some of this
emplacement history (e.g. Beaumont et al. 2001, 2004;
Yin 2006; Larson et al. 2010b, 2013), or even all of this
emplacement history (Figure 2C) (e.g. Webb et al. 2007,
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2011a, 2011b, 2013). More recently, as detailed explora-
tion of the crystalline core has led to recognition of inter-
nal shear zones, the kinematics of crystalline core
assembly has also been explained via both extrusion
(e.g. Reddy et al. 1993; Carosi et al. 2007, 2010;
Imayama et al. 2012; Mukherjee et al. 2012; Montomoli
et al. 2013; Rubatto et al. 2013; Wang et al. 2013) and
duplexing processes (Figure 2D) (e.g. Reddy et al. 1993;
Martin et al. 2010; Corrie and Kohn 2011; Webb et al.
2013; Larson and Cottle 2014).

The central Nepalese Himalaya (Figure 3) has long
served as the primary laboratory for exploration of the
above questions. Nepal’s open-access policy, dating to
the 1950s, and the region’s centrality in the Himalayan
arc has led scores of international and Nepali geologists
to conduct detailed investigations of the areas surround-
ing Kathmandu (as reviewed by Upreti 1999). Many
important contributions of geological mapping and data
sets have been produced, such that knowledge of this
area has continually outpaced understanding of the
remainder of the orogen (e.g. Hagen 1969; Le Fort
1975; Stöcklin 1980; Stöcklin and Bhattarai 1982; Arita
1983; Colchen et al. 1986; Pecher 1989; Hodges et al.
1996; Parrish and Hodges 1996; Bilham et al. 1997;
Godin et al. 1999; DeCelles et al. 2000; Lavé and
Avouac 2000; Burbank et al. 2003; Gehrels et al. 2003,
2006; Bollinger et al. 2004; Wobus et al. 2005; Herman

et al. 2010; Grandin et al. 2012; Khanal and Robinson
2013; Khanal et al. 2014). The classical three-layer, two-
fault structural stack geometry of the orogen – i.e. the
crystalline core in fault contact with lower grade strata
along both the MCT and STD – is well exposed and
accessible along many parallel river transects here
(Figure 3). Moreover, amphibolite facies rocks and sub-
greenschist facies rocks both extend from hinterland to
foreland in nearly continuous exposures, enabling inter-
rogation of the geological evolution via a broad range of
techniques. The combination of the apparent simplicity
of the structural pattern and the viability of many inves-
tigative techniques has regularly attracted cutting-edge
analytical campaigns to the region (e.g. Macfarlane
1993; Parrish and Hodges 1996; Rai et al. 1998; Catlos
et al. 2001; Johnson et al. 2001; Beyssac et al. 2004;
Bollinger et al. 2004; Kohn et al. 2004; Law et al. 2004;
Carosi et al. 2006; Blythe et al. 2007; Larson and Godin
2009; Herman et al. 2010).

A recently proposed modification to the structural
framework of the central Nepal Himalaya would alter
our understanding of the extrusion and duplexing models
for the emplacement of the crystalline core. Namely, Webb
et al. (2011a) suggested that the southern portion of the
STD intersects the MCT, thus bounding the southern limit
of the crystalline core. Because the posited MCT–STD
intersection geometry implies that the leading edge of the
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Figure 1. Simplified tectonic map of the Himalayan orogen, modified and integrated from Lombardo et al. (1993), Goscombe and Hand
(2000), Murphy et al. (2009), Webb et al. (2011a, 2011b), and references therein. The inset of shaded relief map in the lower right corner
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Figure 3.
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crystalline core is buried today and then requires the
crystalline core to have been emplaced at depth, it chal-
lenges long-standing Himalayan extrusion models.
However, the initial study by Webb et al. (2011a) only
presented evidence of this southern STD geometry from a
single locality approximately 50 km northwest of
Kathmandu (Figure 3). There appears to be compelling
evidence in the central Nepal Himalaya, but it has as yet
been documented at only one site. Their model makes firm
predictions for other sites, given the geometry of the
claimed discovery site, so we test these predictions by
looking at more sites.

In this study, we address this problem via field-based
investigation integrating kinematic analysis, quartz c-axis
fabric analysis, and U-Pb geochronology along the pro-
posed trace of the STD in the Kathmandu region. Our
results confirm that the STD occurs across the region
and intersects with the MCT to the south. Similar results
obtained in the Dadeldhura klippe of western Nepal are
presented in a companion paper (He et al. 2014). We then
discuss the implications of the revised STD geometry for
crystalline core emplacement and development models.
Finally, by integrating our new work with existing con-
straints on other aspects of Himalayan development, we
present a kinematic model showing that Himalayan moun-
tain-building processes have been dominated by duplexing
since the Oligocene or earlier.

2. Geology of the Kathmandu Nappe

Variably metamorphosed (half-)klippen along the southern
portions of the Himalayan arc such as the Kathmandu
Nappe (precisely: half-klippe) do not have a generally
accepted position within the tectonic framework of the
Himalayan orogen (e.g. Upreti and Le Fort 1999;
Johnson 2005; Webb et al. 2011a). These rocks have
been interpreted as belonging to one or more of the three
major units in the orogenic wedge: the Lesser Himalayan
Sequence, the Greater Himalayan Crystalline complex,
and the Tethyan Himalayan Sequence. These three units
are commonly defined as fault-separated, that is, the
Greater Himalayan Crystalline complex is bounded by
the MCT below and the STD above, the Lesser
Himalayan Sequence is the MCT footwall, and the
Tethyan Himalayan Sequence occupies the STD hanging
wall (e.g. Upreti 1999; Hodges 2000; Yin 2006; Searle
et al. 2008; cf. Long and McQuarrie 2010).

The Kathmandu Nappe is located in central Nepal with
Kathmandu city near its centre (Figure 3). It was emplaced
to the south along the Mahabharat thrust, which is widely
interpreted as the southern strand of the MCT (e.g.
Stöcklin 1980; Johnson et al. 2001). Subsequent accretion
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of underlying Lesser Himalayan material warped the
nappe into its current geometry: a bowl-shaped synformal,
elongated in the arc-parallel direction (Figure 4; e.g.
Brunel 1986; Bollinger et al. 2004). The nappe rocks of
the hanging wall are dominated by the Bhimphedi Group,
Phulchauki Group, and Sheopuri Gneiss (Stöcklin 1980;
Upreti 1999). The Bhimphedi Group is composed of late
Proterozoic medium- to high-grade metasedimentary rocks
intruded by Cambrain–Ordovician granites, which are
unconformably overlain by the Phulchauki Group, a sec-
tion of Ordovician–Devonian low-grade and unmetamor-
phosed sedimentary rocks (e.g. Stöcklin 1980; Upreti and
Le Fort 1999; DeCelles et al. 2000; Johnson et al. 2001;
Gehrels et al. 2003, 2006). The Phulchauki Group is
commonly correlated to the Tethyan Himalayan
Sequence rocks of the same ages (e.g. Stöcklin 1980;
Johnson et al. 2001; Gehrels et al. 2006), whereas the
affiliation of the Bhimphedi Group remains debated (see
next paragraph). The Bhimphedi–Phulchauki succession is
characterized by a right-way-up thermal gradient peaking
at ~650°C along the top of the ~1–2 km-thick basal shear
zone; the basal shear zone itself displays an inverted

metamorphic field gradient down to ~300°C (Johnson
et al. 2001). This metamorphic pattern contrasts with the
famed inverted metamorphic field gradient that extends
not just across the major trace of the MCT but also
throughout most of the Greater Himalayan Crystalline
complex. Sections crossing the crystalline core to the
north generally show higher metamorphic temperatures
with increasing structural elevation (e.g. cf. Johnson
et al. 2001 vs. Le Fort 1975). The Sheopuri Gneiss,
correlative to the Greater Himalayan Crystalline complex,
occurs along the northern margin of the Kathmandu Nappe
(e.g. Rai et al. 1998; Johnson et al. 2001). This unit
largely consists of kyanite/sillimanite-bearing migmatitic
gneiss and schist (Rai et al. 1998).

Four models may explain the architecture of the
Kathmandu Nappe and potential correlations of nappe
rocks across the orogen (Figure 5): (1) The STD occurs
within the Bhimphedi Group such that the lower
Bhimphedi Group is the southern continuation of the
Greater Himalayan Crystalline complex (Yin 2006). The
upper Bhimphedi Group and Phulchauki Group together
are the Tethyan Himalayan Sequence above the southerly
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STD (Figure 5A). (2) The STD does not occur in the
nappe and all rocks in the nappe are in the footwall of
the STD (Johnson et al. 2001; Gehrels et al. 2003;
Robinson et al. 2003). In this model, the Bhimphedi
Group is the southern continuation of the Greater
Himalayan Crystalline complex; the Phulchauki Group is
stratigraphically correlative to coeval Tethyan Himalayan
Sequence rocks but is nonetheless part of the STD foot-
wall (Figure 5B). In this model, the contact of the
Bhimphedi-Sheopuri groups is an unconformity or a sec-
ond-order faulting contact. (3) The Kathmandu Nappe is a
separate thrust sheet (vs. the MCT thrust sheet) carried by
the Mahabharat thrust in the MCT footwall (Rai et al.

1998; Upreti and Le Fort 1999; Hodges 2000). The
Bhimphedi Group is consequently interpreted as the
Lesser Himalayan Sequence rocks; interpretation of the
Phulchauki Group is similar to that in model 2 (Figure
5C). This model predicts that the contact of the Sheopuri
Gneiss and the Bhimphedi Group rocks along the northern
margin of the Kathmandu Nappe is the top-to-the-south
MCT shear zone. Note that this model conflicts with the
dominant interpretation that the Mahabharat thrust is the
MCT. (4) The STD occurs along the northern margin of
the Kathmandu Nappe. To the south the STD merges with
the MCT to form a branch line (Webb et al. 2011a). Both
the Bhimphedi Group and Phulchauki Group are
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correlative to the Tethyan Himalayan Sequence in that the
Bhimphedi–Phulchauki succession is located to the south
of the MCT–STD branch line and in the hanging walls of
both faults (Figure 5D; e.g. Webb et al. 2007; Webb et al.
2011a). The buried southern limit of the Sheopuri Gneiss,
defined by the branch line, likewise represents the south-
ern limit of the Greater Himalayan Crystalline complex.
Therefore in contrast to the third model, this model pre-
dicts that the contact of the Sheopuri Gneiss and the
Bhimphedi Group rocks along the northern margin of the
Kathmandu Nappe is the top-to-the-north STD shear zone.
In contrast, recent studies by Sapkota and Sanislav (2013)
interpret the top-to-the-north shearing signals in this area
as a set of youngest (post-MCT) structures resulting from
reactivation of older top-to-the-south shearing structures
during folding of the Kathmandu Nappe. In this

contribution, we test the models by investigating this con-
tact along the northern margin of the Kathmandu Nappe.

Geochronological work provides some constraints on
the timing of the emplacement and deformation of the
Kathmandu Nappe. Th-Pb ages of monazite inclusions in
garnet crystals from the Bhimphedi Group and U-Pb zir-
con ages of cross-cutting granites in the Bhimphedi Group
indicate that the frontal klippen experienced early
Palaeozoic tectonism (Gehrels et al. 2003, 2006).
Johnson et al. (2001) obtained a U-Pb zircon age of
~18 Ma from a syn-kinematic leucogranite near the
Sheopuri-Bhimphedi contact. A leucogranite along the
contact which is deformed by top-to-the-north C′ shear
bands yielded U-Pb zircon ages as young as 20 Ma (Webb
et al. 2011a). 40Ar/39Ar muscovite cooling ages from the
Kathmandu Nappe decrease from ~22 Ma at the southern
margin to as young as ~12 Ma at the northern margin of
the synform (Arita et al. 1997; Bollinger et al. 2006;
Herman et al. 2010). Similarly, Rb/Sr mica cooling ages
range from 22 to 14 Ma across the nappe (Johnson and
Rogers 1997). These Miocene ages indicate that emplace-
ment of the Kathmandu Nappe along its ductile basal
shear zone was completed by ~14 Ma.

3. Structural geology

Here, we present results of new structural mapping across
the Sheopuri Gneiss–Bhimphedi Group contact along
the northern limit of the Kathmandu Nappe synform
(Figure 6). We previously reported results of similar
work along a single transect across this contact along
the Mahesh Khola (i.e. Mahesh River) (see Webb et al.
2011a). Four additional transects across the contact are
investigated in this study: the Kakani, Chisapani,
Lapsephedi, and Lamidanda transects from west to east.
Together, these five transects represent coverage of the
entire northern Kathmandu Nappe synform (Figure 6). In
general, the Sheopuri-Bhimphedi contact across these
transects is marked by a southward change from kya-
nite-bearing gneiss, garnet mica schist, granitic gneiss,
and calc-silicate gneiss to quartzite, biotite schist, marble,
and weakly deformed (and apparently undeformed)
granites.

Our prior effort benefitted from continuous fresh rock
exposure across the contact due to fluvial erosion by the
Mahesh Khola. In contrast, exposure along the new trans-
ects is generally limited to modest roadcuts and is altered
by intensive farming. Only patchy records can be
observed, so that the N–S extent of the Sheopuri-
Bhimphedi contact is hardly constrained along these trans-
ects. Poor rock quality, even at the freshest roadcuts,
indicates that weathering processes here reach many
metres, and perhaps tens of metres, into the hillsides.
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Due to this aggressive weathering, much of the rock is
altered and linear fabrics are commonly obliterated, but
planar rock fabrics are generally preserved. Variable man-
ifestations of the deformation features along different
transects also may be partially a response to the
weathering.

The Kakani transect extends along a farm-lined high-
way from Kathmandu through Kakani. Exposures in the
vicinity of the Sheopuri–Bhimphedi contact here are char-
acterized by quartzofeldspathic gneisses and calc-silicate
gneisses deformed in tight asymmetric folds (Figures S1A,
S1B). The width of the contact is constrained to be
<400 m on the basis of first appearances of the Sheopuri
and Bhimphedi units to the north and south, respectively.
The fold asymmetry consistently yields a top-to-the-north
vergence, consistent with observed shear senses at other
locales as explained in the following paragraphs. Rocks
north of the contact zone are dominantly gneisses, garnet

mica schists, and deformed granites; south of this highly
deformed exposure quartzites and low-grade metamor-
phosed pelitic schists intruded by undeformed granites
occur. These two rock assemblages are consistent with
descriptions of the Sheopuri Gneiss and the Bhimphedi
Group, respectively (e.g. Stöcklin 1980; Upreti and Le
Fort 1999; Gehrels et al. 2006). Prior mapping by
Stöcklin and Bhattarai (1982) shows the Sheopuri
Gneiss–Bhimphedi Group contact at the same position
along this transect.

The Chisapani transect follows a road across a jungle
area from Kathmandu to Chisapani. The Sheopuri–
Bhimphedi contact along this transect occurs ~5 km
south of Chisapani with estimated width of <500 m
(again on the basis of first appearances of the Sheopuri
and Bhimphedi units to the north and south, respectively).
The contact features quartzofeldspathic gneisses and calc-
silicate gneisses, both intruded by metre-scale leucogranite
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dikes, all deformed by metre-scale asymmetric boudinage
(Figures S1C, S1D). The asymmetric boudinage consis-
tently displays a top-to-the-north sense of shear (average
dip direction/dip of the shear band surfaces: 314°/49°; see
stereonet in Figure 6). The contact separates quartzofelds-
pathic gneisses characterized by gneissic banding to the
north from weakly deformed and apparently undeformed
granites to the south. These rocks are correlated to the
Sheopuri Gneiss and Cambrian–Ordovician granites of the
Bhimphedi Group, respectively (e.g. Stöcklin and
Bhattarai 1982; Gehrels et al. 2006).

The Lapsephedi transect covers the farming region span-
ning Nagarkot, Melamchi, and Lapsephedi to the northeast
of Kathmandu. We encountered the Sheopuri-Bhimphedi
contact twice along its strike during a loop transect. The
contact thickness is poorly constrained here and can only be
estimated as <1300 m (on the basis of first appearances of
the Sheopuri and Bhimphedi units to the north and south,
respectively). One exposure of the shear zone is character-
ized by asymmetric boudinage that deforms leucogranitic
lenses and gneissic bands (Figures S1E, S1F). The other,
~3 km to the southeast, features sigma-type feldspar por-
phyroclasts in granitic gneisses (Figure S1G). The asym-
metric boudinage and sigma-type porphyroclasts both
display top-to-the-north sense of shear (average dip direc-
tion/dip of the shear band surfaces: 0°/25°). Rocks north of
the contact are mainly composed of granitic gneisses, quart-
zites, kyanite-bearing paragneisses, and garnet biotite
gneisses; rocks south of the contact are dominantly low-
grade biotite schists with minor occurrences of apparently
undeformed tourmaline two-mica granites. The northern
rocks display foliation, S-C fabrics, boudinage, and isoclinal
folds, but this deformation appears less concentrated in
contrast with the contact shear zone.

The Lamidanda transect is the easternmost transect
examined. The Sheopuri–Bhimphedi contact along this
transect is characterized by strongly folded schists. The con-
tact has a poorly constrained width estimation of <2500 m
due to limited access to exposures. S-shaped folds and
recumbent folds in the schists are abundant in an exposure
~3 km south of Lamidanda (Figure S1H). The S-shaped
folds are consistent with a top-to-the-north sense of shear,
and the recumbent folds are north-vergent (average trend/
plunge of the fold axes: 55°/3°; see stereonet in Figure 6).
Quartzites and limestones are dominant to the southwest of
this exposure and garnet mica schists and granitic gneisses
are abundant to the northeast, corresponding to the
Bhimphedi–Phulchauki Groups and Sheopuri Gneiss,
respectively (e.g. Stöcklin 1980). Structural fabrics of the
Bhimphedi rocks to the southwest include mica foliation,
folding, and primary bedding, while the Sheopuri rocks to
the northeast are dominated by mica foliation.

In summary, observations along the four transects
demonstrate that the Sheopuri–Bhimphedi contact is char-
acterized by a shear zone with consistent top-to-the-north

shear sense. These findings are consistent with our prior
work along the Mahesh Khola (Webb et al. 2011a), in
which we termed this shear zone the Galchi shear zone.
Taken together, our findings indicate that the Galchi shear
zone spans the northern reaches of the Kathmandu Nappe
synform.

4. Quartz c-axis fabrics

We employ quartz c-axis fabric analysis to characterize the
shear-sense and deformation temperature experienced dur-
ing movement across the Galchi shear zone. We conducted
such analysis for three samples from the Mahesh Khola
transect (Figure 7). Other transects that we mapped consist
of highly weathered rocks (Figure S1), so that it is almost
impossible to make thin sections for this type of analysis.
Sample EW12-26-07 2B is garnet-bearing quartz leuco-
some, showing steeply dipping foliation to the south and
stretching lineation to the south-southwest. Sample AW12-
25-07 1B is quartzite with steeply south dipping foliation
defined by mica. Sample AW12-24-07 8 is garnet-biotite
schist with S-dipping foliation.

4.1. Methods

In deformed quartz-rich rocks, dynamically recrystallized
quartz grains can develop a lattice-preferred orientation
(LPO) in response to strain that is recorded by systematic
c-axis orientations (e.g. Lister and Price 1978; Lister and
Hobbs 1980; Schmid and Casey 1986; Law 1990). Quartz
c-axis fabric analysis of our specimens was conducted
using a Russell-Head Instruments G50 automated fabric
analyser housed at the University of Saskatchewan. Quartz
c-axis fabric analysis from similar or identical instruments
has proved to be indistinguishable from those determined
through electron back-scattered diffraction (e.g. Wilson
et al. 2007; Peternell et al. 2010). All thin sections ana-
lysed were cut perpendicular to foliation and parallel to
mineral stretching lineation and all c-axis orientation data
are plotted in equal-area lower-hemisphere stereographic
projection. The projection plane is perpendicular to folia-
tion and parallel to lineation such that the lineation lies
horizontal in the E–W direction and the foliation plane lies
vertical in the same direction. Contour and scatter plots
were generated using Stereonet 7.2.4 developed by R
(W. Allmendinger 2012). All quartz c-axis fabric plots
are viewed towards the east such that, for example, a
sinistral asymmetric pattern with respect to foliation indi-
cates a top-to-the-north sense of shear.

4.2. Results

Sample EW12-26-07 2B is from the Galchi shear zone in
the Mahesh Khola area, whereas samples AW12-25-07 1B
and AW12-24-07 8 are from the hanging wall of the shear
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zone here (Figure 7A). The quartz LPO yielded by EW12-
26-07 2B exhibits a poorly defined type-I cross-girdle
fabric with an asymmetry consistent with top-to-the-north-
east shear (Figure 7B). Sample AW12-25-07 1B yields a
well-developed single girdle fabric that also has an asym-
metry consistent with top-to-the-northeast shear. Sample
AW12-24-07 8, the structurally highest specimen analysed
from the Mahesh Khola transect, yields a poorly devel-
oped type-I cross-girdle LPO with an asymmetry that
indicates top-to-the-northeast shear (Figure 7B). The
asymmetry of all three samples is consistent with the
field observations of Webb et al. (2011a) that indicate
top-to-the-northeast shearing.

4.3. Deformation temperature estimates

Assuming a consistent critical resolved shear stress per
sample and lack of hydrolytic weakening effects, the open-
ing angles of quartz c-axis cross-girdle fabrics may be
used to estimate the temperature at which they developed
during deformation (Tullis et al. 1973; Lister and Hobbs
1980; Kruhl 1998; Law et al. 2004). Opening angles have
been empirically shown to have an approximately linear
relationship with deformation temperatures between ~300
and 650°C (Kruhl 1998; Law et al. 2004). This empirical
calibration is subject to an estimated error of ±50°C to
reflect both analytical and judgement-induced errors
(Kruhl 1998). Many studies carried out across the
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Himalayan orogen indicate that the deformation tempera-
tures, across both the MCT and STD, estimated from
fabric opening angles are comparable with the meta-
morphic temperatures derived by mineral assemblages
(e.g. Law et al. 2004; Larson and Godin 2009; Larson
et al. 2010a, 2010b, 2013; Law et al. 2011; Yakymchuk
and Godin 2012; Law et al. 2013; Larson and Cottle 2014;
see also review of Law, 2014). We therefore argue that the
quartz c-axis fabric opening angle thermometer is applic-
able to our specimens and can make reasonable deforma-
tion temperature estimates.

Two of the samples analysed, EW12-26-07 2B and
AW12-24-07 8, have type-I cross-girdled patterns that
may be appropriate for deformation temperature estima-
tion. The LPO patterns yield opening angles of 69° for
AW12-24-07 8 and 78° for EW12-26-07 2B as measured
about the top and bottom poles of the stereonets. Those
opening angles indicate deformation temperatures of
550 ± 50°C for AW12-04-07 8 and 620 ± 50°C for
EW12-26-07 2B (Figure 8). These temperatures are indis-
tinguishable from peak metamorphic temperatures (686°C
and 591°C) derived from garnet-biotite thermometry by
Johnson et al. (2001) for rocks of the same areas.

5. U-Pb zircon geochronology

5.1. Methods

Two leucogranite samples from Galchi shear zone in the
Kathmandu Nappe were analysed via U-Th-Pb zircon
geochronology to determine timing of shearing. Fifty-
eight spot data from 32 zircon grains were acquired
using the CAMECA IMS 1270 ion microprobe at the
University of California–Los Angeles. The detailed

analytical procedure is described by Schmitt et al.
(2003). The analyses were undertaken using an 8–15 nA
O- primary beam with a ~15 μm diameter spot size, which
generated a crater with ~1 μm depth. U-Pb ratios were
determined using a calibration curve based on UO/U
versus Pb/U from zircon standard AS3 with age of
1099.1 Ma (Paces and Miller 1993) and adjusted using
common Pb for the late Cenozoic (Stacey and Kramers
1975). Concentrations of U were calculated by comparison
with zircon standard 91500 with a U concentration of 81.2
ppm (Wiedenbeck 2004). Data reduction was accom-
plished by the in-house program ZIPS 3.0 developed by
Chris Coath.

5.2. Results

Sample DH11-21-10 4 was collected south of Lapsephedi
along the Lapsephedi transect from an undeformed leuco-
granite body that cross-cuts top-to-the-north fabrics of the
Galchi shear zone (Figures 6 and S2A, S2C). Among the
24 spots analyses from 14 zircon grains, four spots yield
early Palaeozoic 238U/206Pb ages from ca. 489 to 508 Ma
(Figure 9 and Table S1). Note that the errors of all age data
can be found in Table S1 and visualized in Figure 9. These
older spot analyses have low U concentrations (332 ppm
on average) and low U/Th ratios (2.25 on average).
Cathodoluminescence (CL) images reveal that these early
Palaeozoic ages are from grains characterized by bright
colour, euhedral shapes, and small grain sizes (Figure 9A).
The remaining 20 spot analyses exhibit concordant late
Oligocene to middle Miocene 238U/206Pb ages with two
clusters: grain core ages of ca. 26.7–19.3 Ma and grain rim
ages of ca. 18.8–13.8 Ma (Figure 9B). Among these
Cenozoic ages, the core ages have high U concentration
(>5680 ppm) and high U/Th ratios (mostly >100), whereas
the rim ages have lesser U concentrations (2295–3786
ppm) and U/Th ratios (37–80). CL images show that the
cores with Cenozoic ages are characterized by mosaic
textures, truncated by younger rims with convoluted zon-
ing (Figure 9A).

Sample DH12-12-10 2 is from a deformed leucogra-
nitic sill in the top-to-the-north Galchi shear zone in the
vicinity of Kakani (Figure 6). The leucogranitic lens is
concordant with foliation of the host rock and boudinaged
(Figures S2B, S2D), indicating that it is pre-kinematic or
syn-kinematic. Thirty-four spots from 18 zircon grains
were analysed. Ten spot analyses are discordant and
yield 238U/206Pb ages ranging from ca. 931 to 45.5 Ma;
the remaining 24 spot analyses are concordant and yield
238U/206Pb ages of ca. 37.5–23.1 Ma (Figure 9 and Table
S1). Among the younger ages, rim ages spread from ca.
30.8 to 23.1 Ma with an outlier age of 37.5 Ma, whereas
cores yield ages of ca. 34.7–29.4 Ma (Figure 9B).
Analyses yielding discordant data have low-U concentra-
tions (mostly <2000 ppm) and low U/Th ratios (3.7–62),
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whereas the Cenozoic concordant ages have high-U con-
centrations (mostly >2000 ppm) and high U/Th ratio
(mostly >100). CL images reveal that the discordant old
ages correspond to bright, oscillatory-zoned cores. Cores
yielding Cenozoic concordant ages display mosaic tex-
tures, while young rims show concentric zoning or con-
voluted zoning (Figure 9A).

5.3. Interpretation

Both samples yield three groups of data with distinctive
age, chemical, and textural characteristics. The three
groups are pre-Cenozoic cores, Cenozoic cores, and
Cenozoic rims. The Cenozoic cores and rims mostly
have high U/Th ratios, which are commonly associated
with metamorphic or hydrothermal events (e.g. Hoskin
and Black 2000; Rubatto 2002; Rubatto et al. 2006).
Both samples have some zircon grains that present mosaic
textures in cores and convoluted zoning in rims. Mosaic
textures may be developed by metasomatic replacement of
zircon or represent metamict or recrystallized zircons
(Corfu et al. 2003; Rubatto et al. 2013), and convoluted
zoning may result from late to post-magmatic recrystalli-
zation of trace-element-rich domains or later metamorphic
events (Corfu et al. 2003). Therefore, the chemical and

textural characteristics indicate that growth of the zircon
grains with Cenozoic ages in both samples is related to
metamorphism.

Pre-Cenozoic cores of both samples are interpreted as
inheritance, reflecting early Palaeozoic fold-thrust belt
development (Gehrels et al. 2003, 2006). Cenozoic cores
are consistently older than Cenozoic rims for both sam-
ples: ages are ca. 34.7–29.4 Ma (cores) and ca. 30.8–
23.1 Ma (rims), and ca. 26.7–19.3 Ma (cores) and 18.8–
13.8 Ma (rims), for samples DH12-12-10 2 and DH11-21-
10 4, respectively. The wide span of Cenozoic ages (ca.
35–13 Ma) from cores to rims indicates protracted zircon
growth. This feature has been documented in different
Himalayan tectonic domains (e.g. Lee and Whitehouse
2007; Cottle et al. 2009; Rubatto et al. 2013) and can be
interpreted as episodic growth of zircon in the presence of
melt if high temperatures were maintained over a long
time period (Rubatto et al. 2013). Given the chemical
and textural distinctions between Cenozoic core and rim
ages for both samples, we interpret only the rim ages as
leucogranite crystallization ages. Core ages are interpreted
as inheritance from earlier metamorphic event(s). Because
sample DH12-12-10 2 is of a pre- and/or syn-kinematic
intrusion and sample DH11-21-10 4 is of a post-kinematic
intrusion within the Galchi shear zone, our interpretation
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of Cenozoic rim ages indicates that the Galchi shear zone
was active between 23.1 and 18.8 Ma (and possibly
earlier) and ceased activity before ca. 18.8–13.8 Ma.

6. Discussion

Field mapping and kinematic analysis along the northern
margin of the Kathmandu Nappe confirm that a top-to-the-
north shear zone, the Galchi shear zone, separates
Sheopuri Gneiss to the north from Bhimphedi Group to
the south. In this framework, the Bhimphedi and
Phulchauki Groups are the Tethyan Himalayan Sequence
as shown by Webb et al. (2011a). Quartz c-axis fabrics
from our westernmost transect across the Galchi
shear zone and its hanging wall (1) confirm the top-to-
the-north shear kinematics and (2) yield deformation tem-
peratures consistent with observed right-way-up peak
metamorphic temperatures (cf. Rai et al. 1998; Johnson
et al. 2001). U-Pb zircon dating of pre-to-syn- and post-
kinematic leucogranite demonstrates that the Galchi shear
zone was active between 23.1 and 18.8 Ma and ceased
activity before ca. 18.8–13.8 Ma. These timing constraints
are consistent with our early interpretation of Galchi shear
zone activity (Webb et al. 2011a) and similarly supported
by published U-Pb zircon ages of pre-to-syn-kinematic
leucogranite from the westernmost transect across the
shear zone (Johnson et al. 2001; Webb et al. 2011a) and
with muscovite cooling ages of ~15–12 Ma across the
northern margin of the Kathmandu Nappe (Arita et al.
1997; Herman et al. 2010). In the following subsections,
we discuss the implications of these findings for the
emplacement of the Himalayan crystalline core (the
Greater Himalayan crystalline complex). We then synthe-
size the results of the recent literature and this work into a
new model for the evolution of the Himalayan orogen, in
which duplexing persistently plays the dominant role.

6.1. The STD at the Kathmandu Nappe

Webb et al. (2011a) initially correlated the Galchi shear
zone to the STD on the basis of four criteria: lithological
juxtaposition, metamorphic correlations, structural fabrics,
and timing of deformation. These criteria are widely applied
for recognizing the STD in other regions across the orogen
(e.g. Godin et al. 2006; Wagner et al. 2010; Cottle et al.
2011). All these criteria hold true for the four transects
investigated in this study across the northern Kathmandu
Nappe. Here, we would like to address that the meta-
morphic sequence across the shear zone plays a key role
in making our interpretation. The contrast of metamorphic
sequence, i.e. the distinction between right-way-up meta-
morphic field gradients across the southerly segments of the
range versus the inverted metamorphic field gradients
across the central swaths of the range, is one of the key
distinctions in current Himalayan tectonics research.

Workers who recognize this distinction (e.g. Leger et al.
2013) arrive at starkly different interpretations of orogenic
structure to workers who do not recognize it (e.g. Law et al.
2013). Thus, the Galchi shear zone is interpreted as the
STD along the entire northern margin of the Kathmandu
Nappe synform, juxtaposing the Sheopuri Gneiss (i.e. the
Greater Himalayan Crystalline complex) to the north with
the Bhimphedi Group to the south (Figures 5D and 10).
This contact intersects the MCT to the east and west along
the northern margin of the Kathmandu Nappe (Stöcklin
1980; Rai et al. 1998), so the Galchi shear zone/STD like-
wise intersects the MCT on the northwest and northeast
margin of the nappe (Webb et al. 2011a). This geometry
requires that the Greater Himalayan Crystalline rocks
between the Galchi shear zone/STD and the MCT cut out
to the south, representing the frontal tip of this tectonic unit
(Figure 6 and 10). Specifically, the thickness of the Greater
Himalayan Crystalline complex here decreases southwards
(i.e. in the direction of transport), as shown by the five cross
sections across the northern Kathmandu Nappe of
Figure 10.

One of our major data sets to demonstrate the correla-
tion of the Gachi shear zone and STD is the dominant top-
to-the-north shearing in the Gachi shear zone. However, a
recent study by Sapkota and Sanislav (2013) shows that
both top-to-the-south and top-to-the-north shearing exist in
the Kathmandu Nappe by analysing a large number of thin
sections. It appears that top-to-the-south shearing domi-
nates the region if indiscriminately looking at all those
mixed data together. However, when looking closely at the
data from the area of Galchi, we find out that most sam-
ples with top-to-the-north shearing are located in an E–W-
trending, narrow zone that is coincident with the Galchi
shear zone defined by Webb et al. (2011a). Outside of this
narrow zone characterized by dominance of top-to-the-
north shearing, the structural fabrics are overwhelmed by
top-to-the-south shearing. Sapkota and Sanislav (2013)
propose a hypothesis that the top-to-the-north shearing is
a set of youngest (post-MCT) structures in the region
representing reactivation of older structural fabrics during
folding of the Kathmandu synform. Their model, however,
does not consider the first-order structural contact between
the Bhimphedi and Sheopuri groups along the northern
margin of the Kathmandu Nappe. This contact is mapped
in this study as the Galchi shear zone with dominance of
top-to-the-north shearing, which was active between 20
and 14 Ma constrained by the U-Pb zircon dating of a
deformed leucogranite cutting by top-to-the-north shearing
in the Galchi shear zone from the Mahesh Khola transect
(Webb et al. 2011a) or between 23 and 19 Ma constrained
by deformed and undeformed leucogranites in the Galchi
shear zone from the Kakani transect and Lapsephedi trans-
ect (this study). These ages are much older than the pre-
dicted timing of the top-to-the-north shearing in the
alternative model of Sapkota and Sanislav (2013). On
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the other hand, the alternative model is supposed to predict
that the top-to-the-north shearing structures are evenly
distributed in the northern limb of the Kathmandu syn-
form, but both their data and our data indicate that the top-
to-the-north shearing is concentrated in the Galchi shear
zone. Therefore, we do not favour this alternative model
for interpreting the Galchi shear zone. Nonetheless, some
of top-to-the-north shearing structures spotted in the
Kathmandu Nappe may be well explained by the model
of Sapkota and Sanislav (2013).

6.2. The horizontal STD

Although the STD has long been understood as a
N-dipping normal fault (or fault zone), there is nonetheless

increasingly well-documented evidence that the STD (1) is
regionally warped, such that it occurs in a variety of
orientations (e.g. Grujic et al. 2002; Epard and Steck
2004; Yin 2006; Antolín et al. 2013), and (2) was a sub-
horizontal shear zone during its early–middle Miocene
period of activity (e.g. Yin 2006; Webb et al. 2007;
Larson et al. 2010b). The southward extension of the
STD documented in this work, combined with the main
trace along the range crest and the likely northern expo-
sures within the Northern Himalayan gneiss domes (Chen
et al. 1990; Larson et al. 2010a; Wagner et al. 2010), is
consistent with the STD having a broadly sub-horizontal
orientation now across ~200 km in the fault transport
direction (e.g. Yin 2006; Webb et al. 2011a, 2011b;
Kellett and Grujic 2012). A sub-horizontal active STD
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interpretation is supported by several other lines of evi-
dence: (1) generally consistent exposures of stratigraphic
juxtaposition across the STD in the transport direction
(e.g. Burchfiel et al. 1992; Grujic et al. 2002); (2) roughly
constant peak P-T conditions across the STD exposures in
the transport direction (e.g. Grujic et al. 2002; Jessup et al.
2008; Kellett et al. 2010; Wagner et al. 2010); (3) no
thermochronological break in the proximal hanging wall
and footwall of the STD (e.g. Metcalfe 1993; Godin et al.
2001; Vannay et al. 2004; Chambers et al. 2009; Martin
et al. 2014); and (4) early–middle Miocene exhumation
rates as low as <<0.1 mm/year in STD footwall rocks north
of the Kathmandu Nappe (Wobus et al. 2008). Therefore,
the N-dipping exposures of this fault along the range crest
likely were tilted into this orientation by subsequent defor-
mation (Yin et al. 2010; Long et al. 2011; Webb 2013;
McQuarrie et al. 2014).

With reference to the first line of evidence cited ear-
lier, it is worth noting that the STD does not uniformly
maintain the same hanging wall stratigraphy across the
breadth and width of the Himalaya. For example, if the
common interpretation that many North Himalayan
gneiss domes are bounded by the STD is correct (e.g.
Chen et al. 1990; Larson et al. 2010a; Wagner et al.
2010), then the STD hanging wall protolith lithologies
in many such positions are significantly younger than
elsewhere in the orogen. This could be interpreted to
indicate N-directed thrusting, but may just as readily
reflect regional stratigraphic variations. Similar variations
commonly show large swaths of ‘missing section’ in low-
deformation portions of the orogen (e.g. Vannay and
Steck 1995). Such a section is missing via unconformi-
ties, not faults (e.g. Frank et al. 1995; Vannay and Steck
1995), so subsequent cutting by a flat fault would coin-
cide with changes in stratigraphy.

A final component of evidence that is commonly cited
to support a N-dipping normal fault STD is local juxtapo-
sition of high-grade Greater Himalayan Crystalline com-
plex rocks with low-grade Tethyan Himalayan Sequence
rocks along steeply N-dipping brittle normal faults. Such
relationships occur because some normal faults with gen-
erally less than 5 km of displacement were active late in
the deformation history (e.g. Epard and Steck 2004; Webb
et al. 2013; Robyr et al. 2014). Examples include the
Sarchu Normal fault of northwest India and normal faults
along the Bhutan–southeast Tibet border (e.g. Steck et al.
1993; Edwards et al. 1996). These faults locally excise
some or the entire STD shear zone, and because flattening
within the STD shear zone produced an apparent com-
pressed geothermal gradient (e.g. Law et al. 2011), the
apparent thermal offset across these small normal faults
can seem profound. Nonetheless, these are minor features
with small offsets that postdate STD shearing (Epard and
Steck 2004; Webb et al. 2013; Robyr et al. 2014).

6.3. The MCT-STD branch line along the Himalayan arc

With the preceding clarification of the sub-horizontal geo-
metry of the STD during slip, and the results of this study
showing the southern extension of the STD and the frontal
tip of the Greater Himalayan Crystalline complex along
the northern Kathmandu Nappe, we now proceed to assess
the universality of the MCT-STD branch line along the
southern reaches of the orogen (Figure 3). To the west of
the Kathmandu Nappe, numerous works have documented
this relationship in recent years. Yin’s (2006) synthesis
suggested the presence of the MCT-STD branch line in
the Zanskar and Himachal regions of northwest India;
Webb et al. (2007, 2011b) used integrated tectonic inves-
tigations to confirm the essentials of this relationship in
Himachal (Figure 1). Webb et al. (2011a) proposed the
occurrence of the MCT–STD branch line in the
Dadeldhura Klippe of western Nepal; both Antolín et al.
(2013) and He et al. (2014) confirm the southern extension
of the STD along the northern margin of the klippe and
show that the STD and MCT occur within ~1 km of each
other. He et al. (2014) further demonstrate that the Greater
Himalayan Crystalline complex thins from north to south
in the Dadeldhura region. Therefore, unless the faults
diverge farther south as shown by Antolín et al. (2013),
the MCT–STD branch line must occur there as well. In the
Annapurna–Dhaulagiri region of Nepal, the MCT and
STD lie closely together: the crystalline rocks between
the two shear zones are only ~2–6 km thick (Hodges
et al. 1996; Vannay and Hodges 1996; Searle and Godin
2003; Godin et al. 2006; Larson and Godin 2009; Carosi
et al. 2007, 2010; Martin et al. 2014) but do not intersect
each other. In this region, the MCT–STD branch line is
interpreted to be eroded away (Figure 4). For most other
regions west of Kathmandu, the branch line also appears
to be eroded away. If the MCT–STD branch line is an
orogen-wide feature, the along-strike thickness variation
of the crystalline rocks (e.g. ~20 km in eastern Nepal vs.
~2–6 km in central and western Nepal) can be interpreted
to reflect across-strike thinning of the crystalline rocks
(Figures 3 and 4). Specifically, regions with thick crystal-
line rocks indicate that the exposures represent the rear
(hinterland) part of the crystalline core while regions with
thin crystalline rocks indicate that the exposures are the
front (foreland) part of the crystalline core.

This study demonstrates that the boundary between the
Greater Himalayan Crystalline complex (i.e. the Sheopuri
Gneiss) and the Bhimphedi Group in the Kathmandu
Nappe is characterized by the southern extension of the
STD. Lombardo et al. (1993) show the Sheopuri–
Bhimphedi contact extending to the southern portion of
eastern Nepal, where the contact is interpreted as a
S-dipping, N-directed thrust fault. Based on the criteria
presented here, we also interpret this contact in eastern
Nepal as a southern extension of the STD and its
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intersection with the MCT as the MCT–STD branch line
(Figures 1 and 3). Similar outcroppings of the branch line
may exist farther east, from southeastern Nepal as far as
southeastern Bhutan (following and locally re-interpreted
from Lombardo et al. 1993; Goscombe and Hand 2000;
Grujic et al. 2002; Long and McQuarrie 2010; Long et al.
2011). Farther east in the Arunachal Himalaya (India), the
branch line appears to be eroded away (Figure 1).

The orogen-wide distribution of the MCT-STD branch
line indicates that focused erosion may not play a crucial
role in the emplacement of the crystalline core, although
precipitation and erosion have played a major role in
shaping the orogenic evolution. Specifically, focused ero-
sion is not a main driver to suck the crystalline core to the
surface (cf., Beaumont et al. 2001), because the leading
edge of the crystalline core is preserved in many regions
across the orogen. Many recent studies also suggest that
there is no simple relationship between precipitation, ero-
sion, and structural evolution in the orogen (e.g. Burbank
et al. 2003; cf., Wobus et al. 2005; Bookhagen and
Burbank 2006; Blythe et al. 2007; Thiede et al. 2009;
Thiede and Ehlers 2013).

In summary, the southern trace of the STD merges
with the MCT in several regions of the southern
Himalaya. The widespread distribution of the MCT–STD
branch line along the length of the range indicates that it is
an orogenic feature rather than a local anomaly (Figure 1).
In the following subsections, we review the consequences
of this geometry for Himalayan kinematic models.

6.4. Emplacement of the Himalayan crystalline core

The range of kinematic models proposed for the emplace-
ment of the Himalayan crystalline core – wedge extrusion,
channel flow, tectonic wedging, and duplexing – are pre-
sented schematically in Figure 2. These schematic repre-
sentations capture the most common versions of each
model. Models labelled ‘critical taper’ are also commonly
promoted, but the general kinematics of these typically
match the wedge extrusion model, or in some cases the
duplexing model. The features documented by this work,
i.e. the southwards MCT–STD merger and the present-day
local burial of the frontal tip of the Greater Himalayan
Crystalline complex, are only consistent with the tectonic
wedging model (Figure 2C) (or the early tunnelling stage
of the channel flow model, which shares similar kine-
matics to tectonic wedging, without a significant late
focused denudation and exhumation stage). The other
kinematic models show the Greater Himalayan
Crystalline complex exhumed to the surface by the early
to middle Miocene, but such a scenario is impossible to
square with current preservation of the leading edge of this
unit. Given such exhumation, the leading edge rocks
would all be eroded away by now.

Other models offer important perspectives on the
emplacement of the Himalayan crystalline core. First,
channel flow models offer a compelling focus and range
of predictions concerning internal kinematics of the crys-
talline rocks, and the latest channel flow models are con-
sistent with known geometries. As the evidence for a
southwards MCT–STD merger and the present-day local
burial of the frontal tip of the Greater Himalayan
Crystalline complex mounts (e.g. Yin 2006; Webb et al.
2007, 2011a, 2011b; Leger et al. 2013; He et al. 2014; this
work), workers exploring the potential importance of
southwards tunnelling of channelized lower/middle crust
are gradually modifying the kinematics of the channel
flow model. The late exhumation stage is de-emphasized
or discarded, and the tunnelling stage expanded into
younger periods (e.g. Larson et al. 2010b; Kellett and
Grujic 2012; Larson and Cottle 2014), such that many
recent implementations of channel flow models share
first-order kinematics with tectonic wedging models.
Convergence of kinematic models is a promising develop-
ment. Second, duplexing models are most commonly
represented as shown with the Greater Himalayan
Crystalline complex exhumed to the surface in the early
to middle Miocene (e.g. Carosi et al. 2010; Imayama et al.
2012; Mukherjee et al. 2012; Montomoli et al. 2013).
However, recent tectonic wedging modelling has involved
some duplexing (Webb et al. 2013), or duplexing models
have involved some channel tunnelling/tectonic wedging
(Larson and Cottle 2014), such that the concept is the
same: the STD is envisioned as the roof thrust to a duplex
made of Greater Himalayan Crystalline complex horses
for at least a period of Himalayan shortening.

6.5. Internal development of the Himalayan
crystalline core

Here, we explore the internal kinematics of the Greater
Himalayan Crystalline complex and corresponding impli-
cations for orogenic mechanics.

6.5.1. Key findings: discontinuities, flattening, and
melting

Recent suggestions that duplexing may dominate much of
the assembly of the Greater Himalayan Crystalline com-
plex are based on the recognition of multiple faults within
the Greater Himalayan Crystalline complex across the
entire Nepal Himalaya (Figure 3; e.g. Reddy et al. 1993;
Carosi et al. 2010; Martin et al. 2010; Corrie and Kohn
2011; Imayama et al. 2012; Wang et al. 2013; Larson and
Cottle 2014). These faults are parallel to the MCT, feature
top-to-the-south thrusting, and generally show younger
periods of motion at lower structural positions. This in-
sequence structural development is not entirely uniform:
Rubatto et al. (2013) documented a reversal of this pattern
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at the upper structural levels of the Greater Himalayan
Crystalline complex in the Sikkim Himalaya, and an out-
of-sequence structures are recognized elsewhere (e.g.
Larson and Cottle 2014; Warren et al. 2014). The general
pattern appears consistent with the recent hypothesis that
the Greater Himalayan Crystalline complex is not a uni-
form unit or fossilized distributed flow channel but rather
consists of multiple slices that have been assembled since
the Oligocene via dominant duplexing and minor out-of-
sequence faulting (Martin et al. 2010; Corrie and Kohn
2011; Montomoli et al. 2013; Webb et al. 2013; Larson
and Cottle 2014), a process similar to the development of
the Lesser Himalayan Sequence duplex (e.g. Robinson
et al. 2003; Konstantinovskaia and Malavieille 2005;
Herman et al. 2010; Martin et al. 2010; Long et al.
2011; Webb 2013).

Another key feature that informs our understanding of
Himalayan crystalline core development is the pervasive
development of foliation and corresponding foliation-per-
pendicular flattening strain (e.g. Vannay and Grasemann
2001; Carosi et al. 2006; Corrie et al. 2012). This flatten-
ing is commonly understood to represent deformation/flow
at depth within the orogenic wedge, perhaps within a
channel (e.g. Beaumont et al. 2004; Larson et al.
2010b). However, Long et al. (2011) presented a model
for the development of foliation in Lesser Himalayan
thrust sheets suggesting that these fabrics develop during
burial below the orogenic wedge, prior to accretion of
thrust sheets from the downgoing plate and synchronously
with peak metamorphism. These authors allow that the
same process may occur during development of the
Greater Himalayan Crystalline complex.

Work on the channel flow model has focused attention
on the ability of melts to substantially lower viscosities of
rock packages and thus allow zones of enhanced flow (e.g.
Nelson et al. 1996; Beaumont et al. 2001). Because
most exposed Cenozoic Himalayan igneous rocks are
leucogranites produced by dehydration melting of metape-
lites (Patino Douce and Harris 1998), these melts may
have been generated by decompression and/or heating
(strain heating or burial heating). Heating could occur
prior to accretion in the downgoing Indian plate, whereas
decompression melting can occur only after initiation of
exhumation. Exploration of potential kinematic conse-
quences has largely focused on melting within the oro-
genic wedge, where it may permit rapid sub-horizontal
and/or sub-vertical motion (e.g. Beaumont et al. 2001;
Faccenda et al. 2008).

A key recent breakthrough in understanding the kine-
matics of the partially molten rocks is the discovery of
correlations between the timing of melting and structural
position. Pressure–temperature–time evolutions associated
with partially molten rocks commonly show 5−10 million
year periods encompassing prograde metamorphism, melt-
ing, and initial rapid cooling, and the absolute age of each

period correlates with the positions of tectonic discontinu-
ities within the Greater Himalayan Crystalline complex
(Corrie and Kohn 2011; Montomoli et al. 2013; Rubatto
et al. 2013; Larson and Cottle 2014). For example, Corrie
and Kohn (2011) reported in Central Nepal three thrust
slices (Sinuwa thrust sheet, Bhanuwa thrust sheet, and
MCT thrust sheet) with similar prograde through exhuma-
tion P-T-t patterns spanning 27–23, 23–19, and 19–15 Ma
(younging from north to south). In many cases, the age of
each period is progressively younger in structurally lower
thrust sheets (unless the pattern is disrupted by late out-of-
sequence faults, as in parts of the eastern Himalaya: Grujic
et al. 2011; Warren et al. 2011, 2014; Regis et al. 2014).
Therefore, the melting process may be correlated with the
deformation pathway experienced by each thrust sheet; the
thrusts may not reflect disruption of an emplaced, pre-
viously partially molten channel. Restating this distinction,
consider that the oldest melts of a channel would be
farthest south (Nelson et al. 1996), so if thrust stacking
post-dates melting the oldest melts should be at the base of
the southward-propagating duplex. In contrast, melting
during decompression following accretion of each succes-
sive thrust sheet would produce southwards younging of
melting and cooling periods (e.g. Corrie and Kohn 2011;
Rubatto et al. 2013). In this model context, we can limit
the role of melting-induced deformation, because it does
not appear to have disrupted the overall duplex geometry
of the Greater Himalayan Crystalline complex, as repre-
sented by the tectonic discontinuities.

6.5.2. The missing components of channel flow

Montomoli et al. (2013) argued that the imbrication inher-
ent in Greater Himalayan Crystalline complex duplexing
limits the maximum thickness of any one slab of the unit
to less than a 20–30 km thickness necessary for channel
flow. In short, they argue that channel flow models may be
running out of room (cf. Grujic 2006). Here we broaden
this view: the channel flow models, including models
involving only channel tunnelling with no late focused
exhumation phase, may be running out of components.

As reviewed by Beaumont et al. (2001), the channel
flow model calls for (1) partially molten crust and (2)
concentrated rapid denudation to explain contempora-
neous (3) MCT shortening and (4) STD motion (which
can be subdivided into a tunnelling period followed by
extension), (5) the development of gneiss domes in south
Tibet, and differences between the Greater Himalayan
Crystalline complex and Lesser Himalayan Sequence in
terms of (6) protoliths and (7) P-T-t paths. For the first
component, (1) partially molten crust, the immediately
preceding section outlines that melts did not traverse tec-
tonic discontinuities within the Greater Himalayan
Crystalline complex. Concentrated rapid denudation,
point (2), is limited by (i) the preservation of the leading
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edge of the Greater Himalayan Crystalline complex, as
documented in this work (and elsewhere: Yin 2006;
Webb et al. 2007, 2011a, 2011b), and (ii) the very low
exhumation rate (e.g. <<0.1 mm/year in north of
Kathmandu Nappe by Wobus et al. 2008; ~0.6 mm/year
in NW Himalaya by Thiede et al. 2009; ~0.5 mm/year in
central Nepal and 0.2–1.2 mm/year for the Sutlej region
by Thiede and Ehlers 2013) of the Greater Himalayan
Crystalline complex rocks in the early–middle Miocene
as compared to the exhumation rates (1–3 mm/year) of the
same rocks from the late Miocene to present. The MCT–
STD branch line described here precludes extension along
the STD, so within the channel flow kinematic context,
only tunnelling can be considered for contemporaneous
MCT, point (3), and STD motion, point (4). Without
consideration of internal Greater Himalayan Crystalline
complex kinematics and a late phase of STD extension,
tunnelling kinematics may be identical to tectonic wed-
ging kinematics. Considering internal kinematics, melting
and accompanying decreases in viscosity could permit
outwards flow forced by the high gravitational potential
of the Tibetan Plateau, but as discussed earlier, such flow
appears limited to the scale of individual tectonic disconti-
nuities within the Greater Himalayan Crystalline complex.
Many Himalayan gneiss domes, point (5), display arc-
parallel extension, which reflects partitioning of 3D strain
that is largely independent of (and of small magnitude
relative to) arc-perpendicular shortening (Styron et al.
2011). Domes that display only arc-perpendicular trans-
port may also develop by accretion and duplexing/antifor-
mal stacking beneath the fold of the dome (Yin 2004).
Channels are not necessary, and associated upwards flow
for gneiss dome development does not appear likely given
the increasing recognition of single-folded shear zones
bounding the upper limits of many Himalayan gneiss
domes (e.g. Larson et al. 2010a; Wagner et al. 2010).
Protolith differences, point (6), of Greater and Lesser
Himalayan rocks do not allow model testing: a variety of
possible pre-deformation stratigraphic configurations, plus
thrust fault slips that commonly are of sufficient magni-
tude to obscure cut-off relationships via footwall burial
and/or hanging wall erosion, permit a wide range of
deformation models. Finally, as discussed earlier, the P-
T-t paths of Greater and Lesser Himalayan rocks, point
(7), appear to have more in common than previously
thought, since both can be achieved via burial and accre-
tion of thrust slices (Herman et al. 2010; Corrie and Kohn
2011; Long et al. 2011). The stacking of Greater
Himalayan slices with similar P-T-duration loops at differ-
ent absolute ages is not consistent with a simple channel
flow (Corrie and Kohn 2011; Montomoli et al. 2013;
Rubatto et al. 2013). As discussed earlier, flattening strain
has also been considered representative of channel flow
(e.g. Larson et al. 2010b), but may be consistent with
deformation prior to accretion (Long et al. 2011). In

summary, every component of the channel flow model is
either precluded by evidence collected over the last 10
years (points (2)–(4), (7)), or may be explained by an
alternative process (points (1), (3)–(7), flattening).

6.5.3. Mechanics: channel flow vs. critical taper, or a
different dichotomy? or What’s the most useful dichotomy?

Discussions of the mechanics of Himalayan crystalline
core development and emplacement commonly centre on
two models: channel flow and critical taper (e.g.
Beaumont et al. 2004; Kohn 2008; Larson et al. 2010b;
Robinson and Pearson 2013). In contrast to the forcing via
gravitational potential and focused erosion that drives
extrusion of a zone of melt-weakened rock in the channel
flow model (Beaumont et al. 2001), the critical taper
model allows the orogenic wedge to fail internally at any
location(s) in order to maintain a critical wedge slope that
reflects a balance of compressional and resisting forces
(Davis et al. 1983). Many workers have advocated that
channel flow versus critical taper is a false dichotomy,
because the two tectonic styles may coexist and overlap
in nature. Channel flow mechanics may dominate in the
hinterland, critical taper may control foreland deformation,
and the boundary between the two zones may shift over
time (Larson et al. 2010b, 2013; Corrie et al. 2012;
Jamieson and Beaumont 2013; Larson and Cottle 2014).
At least in terms of kinematic distinctions, we agree that
this is a false dichotomy. Both channel flow and critical
taper models require extensive deformation of the upper
plate to explain key aspects of the tectonic development of
the Greater and Tethyan Himalayan rocks, most impor-
tantly slip on the South Tibet detachment and Great
Counter thrust.

We argue that a more useful dichotomy with which to
frame exploration of the internal development of the
Greater Himalayan Crystalline complex is the distinction
of upper plate deformation models (e.g. Beaumont et al.
2001; Jamieson et al. 2004; Godin et al. 2006; Harris
2007) versus accretionary models in which the dominant
formation process is accretion to the upper plate of horses
derived from downgoing Indian crust (e.g. Robinson et al.
2003; Bollinger et al. 2004, 2006; Herman et al. 2010). In
short, the important dichotomy is extrusion solely in the
upper plate versus duplexing by accretion from the lower
plate. Significant deformations that must occur in the
upper plate are (1) flow related to melt weakening, (2)
N-directed backthrusting along the STD (e.g. this work,
Yin 2006), (3) slip on the Great Counter thrust (likely
linked to the STD, e.g. Yin et al. 1999), (4) S-directed
out-of-sequence thrusting (e.g. Larson and Cottle 2014),
and (5) folding in response to development of underlying
duplexes and antiformal stacks. Flow of partially molten
rock does not appear to have disrupted faults within the
Greater Himalayan Crystalline complex and is
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correspondingly limited in magnitude. Backthrusting and
out-of-sequence thrusting may accomplish significant
shortening that nonetheless would be modest in compar-
ison to the slip along the basal thrust system. Sub-parallel
tectonic discontinuities within the Greater Himalayan
Crystalline complex suggest only minor folding due to
accretion during development of this unit. Folding subse-
quent to MCT and STD motion is an under-appreciated
control on the present-day geometry of these structures,
particularly the STD (Schelling and Arita 1991; Schelling
1992; Thakur and Rawat 1992; Srivastava and Mitra 1994;
Yin 2006; cf. Law et al. 2011). Combined, these limits on
upper plate processes during Greater Himalayan
Crystalline complex development suggest the dominance
of accretion and duplex development.

6.6. Duplexing dominates Himalayan orogenesis

In this work, we discuss how some key components of
extrusion models for development of the Greater Himalayan
Crystalline complex are precluded by geometric and
kinematic evidence, and the rest can be explained via
underplating and duplex development. Growth of the
Tethyan Himalayan Sequence fold-thrust belt is widely

acknowledged to result from forward propagation of thrust-
ing, forming an imbricate fan (e.g. McElroy et al. 1990;
Steck et al. 1993; Ratschbacher et al. 1994; Frank et al.
1995; Fuchs and Linner 1995; Searle et al. 1997; Wiesmayr
and Grasemann 2002; Murphy and Yin 2003). Duplexing is
recognized as the dominant process that assembled the
Lesser Himalayan Sequence since the late Miocene, with
out-of-sequence deformation restricted to <<10% of short-
ening (e.g. DeCelles et al. 2001; Robinson et al. 2003;
Bollinger et al. 2004, 2006; Herman et al. 2010; Webb
2013; McQuarrie et al. 2014). Recent seismic and inter-
ferometric synthetic aperture radar experiments reveal that
duplexing may still continue at multiple crustal levels at
present (Nábělek et al. 2009; Grandin et al. 2012). Taken
together, Himalayan mountain building appears to record
thrust stacking almost exclusively with dominance of
duplexing processes since the early development of the
Greater Himalayan Crystalline complex.

By synthesizing these findings, an evolutionary history
of the central Himalaya after the initial Indian–Asian colli-
sion is proposed (Figure 11). The first stage we represent
is the post-collisional crustal thickening via accretion of
the Tethyan Himalayan Sequence. These rocks experi-
enced intense south-verging, isoclinal folding, and south-
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directed thrusting after the initial Indian–Asian collision
(e.g. Ratschbacher et al. 1994; Godin et al. 1999, 2001;
Yin et al. 1999; Wiesmayr and Grasemann 2002; Murphy
and Yin 2003; Aikman et al. 2008; Kellett and Godin
2009; Searle 2010). Development of the Tethyan
Himalayan Sequence fold-thrust belt via accretion likely
continued in the foreland during initial metamorphism and
accretion of Greater Himalayan Crystalline complex
horses in the hinterland (Carosi et al. 2010; Corrie and
Kohn 2011). To provide a conceptual framework, we use
the names Thrust 1, Thrust 2, and Thrust 3 to label three
S-directed thrust faults within the Greater Himalayan
Crystalline complex here; they are examples and general-
ized from three thrusts introduced in the western and
central Nepalese Himalaya by Carosi et al. (2010) and
Corrie and Kohn (2011): the Sinuwa thrust, Toijem shear
zone, and Bhanuwa thrust. These three internal thrust
faults have been interpreted as being active at 27, 26,
and 23 Ma, respectively, although the ages of the Sinuwa
thrust and Toijem shear zone may not be distinguishable
when considering the measuring errors. Nonetheless, the
development of duplex within the Greater Himalayan
Crystalline complex via internal thrusting has been docu-
mented by many studies (e.g. Reddy et al. 1993; Corrie
and Kohn 2011; Wang et al. 2013; Webb et al. 2013;
Larson and Cottle 2014). Shortening accommodated by
these three thrust faults is up to 200 km, which has not
been included in balanced shortening estimates (e.g. Webb
2013; McQuarrie et al. 2014).

The backthrusting, sub-horizontal STD may have
acted as a roof thrust to the accumulating Greater
Himalayan Crystalline complex below (à la Dunne and
Ferrill 1988; Erickson 1995; Jones 1996). Such kinematics
would combine elements of the duplexing and tectonic
wedging models (Figure 12). After the early–middle
Miocene, motion along the MCT and STD ceased, and
the Lesser Himalayan Sequence duplex in the MCT

footwall began to develop (Herman et al. 2010). This
duplexing warped the MCT, STD, and the rocks above
both thrusts (e.g. Robinson et al. 2003; McQuarrie et al.
2008; Webb et al. 2013). The leading edge of the Greater
Himalayan Crystalline complex is still locally preserved in
places such as the Kathmandu Nappe (this study) and
Dadeldhura klippe (He et al. 2014), but it has been eroded
away in many other parts of the orogen. Duplexing con-
tinues to act as the main growth and deformation mechan-
ism of ongoing orogenesis at depth (Nábělek et al. 2009;
Grandin et al. 2012).

7. Conclusions

This represents the third and final paper in a series explor-
ing the roles of extrusion versus duplexing processes in
Himalayan mountain building. The first paper (Yu et al.
2014) sufficiently resolves outstanding questions of struc-
tural geometry in the northwestern Indian Lesser
Himalayan Sequence to demonstrate that duplexing dom-
inates middle Miocene to recent mountain building in that
region. The second paper (He et al. 2014) demonstrates
the southwards convergence of the MCT and STD along
the Dadeldhura klippe of western Nepal via evidence of
progressively thinning of the Greater Himalayan
Crystalline complex from north to south and elucidates
the basic function of the STD as a backthrust, not a normal
fault. In the current article, the integration of field map-
ping, kinematic analysis, and U-Pb zircon dating confirms
the interpretation that the mainly top-to-the-north Galchi
shear zone exists across the entire northern Kathmandu
Nappe. The Galchi shear zone is the southern continuation
of the STD and merges with the MCT at depth south-
wards. This work provides additional field evidence that
the MCT–STD branch line exists in the Himalayan orogen
(e.g. Yin 2006; Webb et al. 2007, 2011a, 2011b; Leger
et al. 2013; He et al. 2014). The MCT–STD branch line is
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Figure 12. A kinematic model integrating duplexing and tectonic wedging showing the evolution of the Greater Himalayan Crystalline
complex.
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an orogen-wide feature and serves as a key criterion to
distinguish extrusion versus duplexing models. These find-
ings, combined with other recent work (Martin et al. 2010;
Corrie and Kohn 2011; Montomoli et al. 2013; Larson and
Cottle 2014; Yu et al. 2014), are synthesized in a recon-
struction showing that Himalayan mountain building since
initial Indian–Asian collision has been dominated by
accretion and duplexing processes at depth.
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