
ABSTRACT

The late Cenozoic Kongur Shan exten-
sional system lies along the northeastern 
margin of the Pamir at the western end of 
the Himalayan-Tibetan orogen, accommo-
dating east-west extension in the Pamir. At 
the northern end of the extensional system, 
the Kongur Shan normal fault juxtaposes 
medium- to high-grade metamorphic rocks 
in both its hanging wall and footwall, which 
record several Mesozoic to Cenozoic tectonic 
events. Schists within the hanging wall pre-
serve a Buchan metamorphic sequence, 
dated as Late Triassic to Early Jurassic 
(230–200 Ma) from monazite inclusions in 
garnet. Metamorphic ages overlap with U-Pb 
zircon ages from local granite bodies and are 
interpreted to be the result of regional arc 
magmatism created by subduction of the 
Paleo-Tethys ocean. The northern portion of 
the footwall of the extensional system exposes 
an upper-amphibolite-facies unit (~650 °C, 
8 kbar), which structurally overlies a low-
grade metagraywacke unit. The high-grade 
unit records late Early Cretaceous crustal 
thickening at ca. 125–110 Ma, followed by 
emplacement over the low-grade metagray-
wacke along a north-northeast–directed 
thrust prior to ca. 100 Ma. Together these 
results indicate signifi cant middle Creta-
ceous crustal thickening and shortening in 

the northern Pamir prior to the Indo-Asian 
collision. A third Late Miocene (ca. 9 Ma) 
amphibolite-facies metamorphic event 
(~650–700 °C, 8 kbar) is recorded in footwall 
gneisses of the Kongur Shan massif. North of 
the Kongur Shan massif, rapid cooling in the 
footwall beginning at 7–8 Ma is interpreted 
to date the initiation of exhumation along 
the Kongur Shan normal fault. A minimum 
of 34 km of east-west extension is inferred 
along the Kongur Shan massif based on the 
magnitude of exhumation since the Late 
Miocene (~29 km) and the present dip of 
the Kongur Shan normal fault (~40°). Field 
observations and interpretation of satellite 
images along the southernmost segment of 
the Kongur Shan extensional system indicate 
that the magnitude of late Cenozoic east-west 
extension decreases signifi cantly toward the 
south. This observation is inconsistent with 
models in which east-west extension in the 
Pamir is driven by northward propagation 
of the right-slip Karakoram fault, suggesting 
instead that extension is driven by vertical 
extrusion due to topographic collapse, radial 
thrusting along the Main Pamir Thrust, or 
oroclinal bending of the entire Pamir region.

Keywords: Pamir, tectonics, metamor-
phism, age determination, extension, crustal 
shortening.

INTRODUCTION

A prominent feature of the Indo-Asian col-
lision zone is the pronounced asymmetry in 
the region of thickened and elevated crust 
immediately north of the Indian craton. In map 
view, the north-south width of thickened crust 

changes dramatically from ~500 km in the 
west across the Pamir and western Himalayan 
syntaxis region to >1500 km in the central and 
eastern portions of the Tibetan Plateau (Fig. 1A). 
Three end-member models have been proposed 
to explain the development of this asymmetry: 
(1) different magnitudes of convergence between 
India and Asia between the eastern and western 
Himalayan syntaxes (e.g., Dewey et al., 1988, 
1989; Le Pichon et al., 1992), (2) eastward lateral 
extrusion of Tibetan crust (Molnar and Tappon-
nier, 1975; Tapponnier et al., 1982; Peltzer and 
Tapponnier, 1988), and (3) distributed shortening 
across the Indo-Asian collision zone interacting 
with lateral heterogeneities in the strength of 
the Asian crust (i.e., Tarim basin) (England and 
Houseman, 1985; Houseman and England, 1996; 
Neil and Houseman, 1997). As an alternative to 
these conceptual models, based on offset of the 
Western and Eastern Kunlun batholiths, Cowgill 
et al. (2003) suggest that the asymmetry of the 
Tibetan Plateau is a result of the development 
of Tertiary thrust belts with opposite polarities 
linked by the left-slip Altyn Tagh fault.

The observations by Cowgill et al. (2003), as 
well as documented Tertiary strike-slip faulting 
and crustal shortening in western Tibet (Ratsch-
bacher et al., 1994; Matte et al., 1996; Searle et 
al., 1998; Kapp et al., 2003), suggest that both 
lateral extrusion and distributed shortening have 
occurred synchronously. However, the relative 
contribution of these mechanisms in the evolu-
tion of the Indo-Asian collision belt, and the 
asymmetry of the Himalayan-Tibetan orogen, 
remains poorly understood (e.g., Le Pichon et 
al., 1992; Johnson, 2002). Key to determining the 
relative contributions of these different deforma-
tion mechanisms is understanding the differences 
in the tectonic evolution between the western 
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 segment (the Pamir–western Himalayan syntaxis) 
and central and eastern segments (the Tibetan Pla-
teau) of the Himalayan-Tibetan orogenic belt.

Tectonic Setting

The Pamir–western Himalayan syntaxis lies at 
the western end of the Indo-Asian collision zone 
and is bounded by the Main Pamir Thrust to the 
north, and the Main Boundary Thrust and Main 
Frontal Thrust to the south (Fig. 1B). The Main 
Pamir Thrust is a crustal-scale fault, interpreted 
to have accommodated northward translation of 
the Pamir ~300 km over the Tarim basin, Tadjik 
basin, and Alai Valley (Burtman and Molnar, 
1993; Brunel et al., 1994; Strecker et al., 1995; 
Matte et al., 1996; Pavlis et al., 1997; Sobel and 
Dumitru, 1997; Arrowsmith and Strecker, 1999). 
To the east, the Main Pamir Thrust links with 
the Western Kunlun thrust belt, which forms 
the southwest termination for the left-slip Altyn 
Tagh fault (Burchfi el et al., 1989; Yin et al., 
2002; Cowgill et al., 2003). The large magnitude 
of northward displacement of the Pamir salient 
has resulted in the development of right-slip 
faults along the eastern margin of the salient 
(e.g., the Kumtagh fault of Sobel and Dumitru, 
1997) and left-slip faults along the western mar-
gin of the salient (e.g., the Darvaz fault, Burtman 
and Molnar, 1993) (Fig. 1B). Like the Main 
Pamir Thrust, the Main Boundary and Main 
Frontal Thrusts in the southern Himalayas are 

crustal-scale faults accommodating northward 
underthrusting of India beneath Asia.

Earthquake hypocenter relocations indicate 
active intracontinental subduction beneath the 
Pamir–western Himalayan syntaxis (Burtman 
and Molnar, 1993; Fan et al., 1994; Pegler and 
Das, 1998). Interpretation of relocated seismic 
events along the southern margin of the Pamir–
western Himalayan syntaxis region suggest 
shallow north-directed subduction of the Indian 
plate beneath Asia (Fan et al., 1994; Pegler and 
Das, 1998). A steeply south-dipping zone of 
seismicity under the Pamir reaches depths of 
~200 km, and projects to the surface trace of the 
Main Pamir thrust (Burtman and Molnar, 1993). 
Interpretation of this zone is controversial and 
has been described as either southward-sub-
ducted Asian lithosphere (Burtman and Molnar, 
1993; Fan et al., 1994) or a rotated portion of 
subducted Indian lithosphere (Pegler and Das, 
1998; Pavlis and Das, 2000).

The eastern margin of the Pamir–western 
Himalayan syntaxis region is bounded by the 
~1000-km-long right-slip Karakoram fault, 
which extends from the eastern Pamir to south-
western Tibet (Fig. 1B). Determining the slip 
history of the Karakoram fault is essential for 
understanding the evolution of the region, as it 
provides constraints on (1) the role and magni-
tude of eastward extrusion (Peltzer and Tappon-
nier, 1988), (2) correlations between the geol-
ogy of the Pamir–western syntaxis and western 

Tibet (Hodges, 2000), and (3) the role and his-
tory of strain transfer between thrust belts and 
extensional systems of the Pamir and western 
Tibet (Ratschbacher et al., 1994; Murphy et 
al., 2000). Studies along the central segment of 
the Karakoram fault document 120–150 km of 
right-slip motion initiating in the Middle Mio-
cene (Searle, 1996; Dunlap et al., 1998; Searle 
et al., 1998). Additionally, studies along the 
southern portion of the Karakoram fault have 
indicated that Late Miocene southward propa-
gation of the fault resulted in 66 ± 5.5 km of 
right-slip displacement, as well as the develop-
ment of the north-south–striking Pulan rift and 
Gurla Mandhata detachment system (Murphy 
et al., 2000, 2002). These studies suggest that 
the Karakoram fault has played a minor role 
in the eastward extrusion of Tibetan crust (i.e., 
<150 km, cf. Armijo et al., 1986, 1989).

In the Pamir–western Himalayan syntaxis 
region, Cenozoic deformation appears to have 
been dominated by north-south shortening 
along east-trending structures (e.g., the Main 
Mantle Thrust, Main Karakoram Thrust, Rushan 
Pshart zone, and Main Pamir Thrust) (Fig. 1B) 
(Burtman and Molnar, 1993). However, active 
deformation in the region is dominated by 
north-trending faults and folds, accommodating 
east-west shortening in the Nanga Parbat massif 
in the south (Madin et al., 1989; Schneider et al., 
1999; Zeitler et al., 2001) and east-west exten-
sion along the Kongur Shan extensional system 
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Figure 1. (A) Simplifi ed regional tectonic map of the Himalayan-Tibetan orogen. (B) Tectonic map of the Pamir–western Himalayan syn-
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(2003). STDS—South Tibetan Detachment, MCT—Main Central Thrust.



TECTONIC EVOLUTION OF THE NORTHEASTERN PAMIR

 Geological Society of America Bulletin, July/August 2004 955

and Karakul rift in the north (Brunel et al., 1994; 
Strecker et al., 1995; Blisniuk and Strecker, 
1996) (Figs. 1B and 2). Recent studies along the 
Nanga Parbat–western syntaxis (Schneider et 
al., 1999; Zeitler et al., 2001) and gneiss domes 
of the Ladakh terrane (Maheo et al., 2002) sug-
gest a tectonic evolution controlled by localized 
strain partitioning (i.e., local buckling of the 
crust, arc-parallel shortening, or a “tectonic 
aneurysm”: Seeber and Pecher, 1998; Burg and 
Podladchikov, 2000; Zeitler et al., 2001). How-
ever, the evolution of east-west extension in the 
Pamir, and the mechanism behind it, remain 
relatively poorly understood.

Pre-Cenozoic Tectonics

The Pamir–western Himalayan syntaxis 
region is composed of terranes accreted to the 

southern margin of Asia during the Paleozoic 
through Mesozoic, and are along-strike equiva-
lents of terranes identifi ed to the east within the 
Tibetan Plateau and to the west in Afghanistan 
(Fig. 1B) (Tapponnier et al., 1981; Burtman and 
Molnar, 1993; Pan, 1996; Yin and Harrison, 
2000). From north to south, these are the North 
Kunlun terrane, northern Pamir (South Kunlun 
terrane), central Pamir (the Rushan Pshart 
zone), Karakoram terrane, and Kohistan-Ladakh 
arc terrane. While correlating the Karakoram 
terrane across the right-slip Karakoram fault to 
the Qiangtang or Lhasa terranes of the Tibetan 
Plateau has been a matter of debate, relatively 
low magnitudes of slip along the Karakoram 
fault (120–150 km: Searle, 1996; Searle et al., 
1998) (60–70 km: Murphy et al., 2000) indicate 
that the Karakoram terrane is equivalent to the 
Qiangtang terrane (Yin and Harrison, 2000). 

The Lhasa and Kohistan-Ladakh terranes are 
considered part of a continuous magmatic arc 
by Yin and Harrison (2000). They suggest that 
the arc has a continental basement equivalent to 
the Lhasa terrane in the Ladakh region (Dewey 
et al., 1988), while the arc was built on oceanic 
crust in the Kohistan terrane (Khan et al., 1993; 
Searle et al., 1999). Kapp et al. (2003) explain 
the abrupt decrease in the width of the Lhasa 
terrane across the Karakoram fault, and the lack 
of continental rocks between the Kohistan and 
Karakoram terranes, as a result of partial to com-
plete northward underthrusting of the Lhasa ter-
rane beneath the Qiangtang-Karakoram terrane.

The successive accretion of terranes dur-
ing the Mesozoic has been interpreted to have 
caused deformation throughout the southern 
margin of Asia, reactivating tectonic belts as 
far north as the Tian Shan mountains during the 
Mesozoic (e.g., Hendrix et al., 1992; Dumitru 
et al., 2001). An increasing body of evidence 
within the Tibetan Plateau and along its margins 
suggests that prior to the Indo-Asian collision, 
the southern portion of Asia was already moder-
ately thickened and possibly elevated (Burg and 
Chen, 1984; Murphy et al., 1997; Hildebrande 
et al., 2001; Kapp et al., 2003; Robinson et al., 
2003), partially as a result of these multiple 
accretion events. Understanding the extent of 
pre-Cenozoic crustal shortening and thicken-
ing is therefore critical when calculating crustal 
budgets for the Indo-Asian collision (e.g., Le 
Pichon et al., 1992; Johnson, 2002).

Late Cenozoic Extension in the Pamir: 
Previous Work and Existing Models

East-west extension in the Pamir is accommo-
dated along two primary structures: the 250-km-
long Kongur Shan extensional system of the 
northeastern Pamir (Arnaud et al., 1993; Brunel 
et al., 1994) and the Karakul rift of the central 
northern Pamir (Strecker et al., 1995; Blisniuk 
and Strecker, 1996) (Fig. 2). Both fault systems 
show evidence of recent activity, and previous 
investigations have provided important fi rst-
order constraints on the timing and kinematics of 
extension. Arnaud et al. (1993) and Brunel et al. 
(1994) fi rst documented rapid Late Miocene to 
Recent exhumation along the west-dipping Kon-
gur Shan normal fault (Fig. 2) with muscovite 
40Ar/39Ar ages as young as 1.9 Ma from footwall 
mylonites. The Karakul rift lies along the north-
ern margin of the Pamir (Fig. 2) and is defi ned 
by steeply east- and west-dipping normal faults, 
bounded by active strike-slip systems striking at 
high angles to the normal faults on the northern 
and southern ends of the rift (Fig. 2) (Strecker et 
al., 1995). Topographic relief attributed to exten-
sion and inferred uplift rates suggest that most 
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of the extension along the Karakul rift is Quater-
nary (Blisniuk and Strecker, 1996).

Several models have been proposed to explain 
the origin of east-west extension in the Pamir, 
which predict different variations in the distribu-
tion and timing of extension. Brunel et al. (1994) 
proposed that the Kongur Shan normal fault is 
the result of synorogenic extension, develop-
ing synchronously with motion along the Main 
Pamir Thrust in order to accommodate growth 
of topography along the Kongur Shan and 
Muztaghata gneiss domes. The model predicts 
initiation of extension and greatest magnitudes 
of extension to be along the Kongur Shan and 
Muztaghata gneiss domes at the center of the 
extensional system, with initiation age and mag-
nitude of extension decreasing to the northern 
and southern ends of the fault system (Fig. 3A). 
Strecker et al. (1995) proposed that extension in 
the Pamir may be driven by radial thrusting of the 
Pamir salient along the Main Pamir thrust. This 
model predicts initiation of extension along the 
northern portion of the fault, propagating south-
ward, with the greatest magnitude of extension 
along the northern portion of the fault (Fig. 3B). 
Alternatively, Yin et al. (2001) proposed that 
extension may be driven by oroclinal bending 
of the entire Pamir–western Himalayan region 
(Fig. 3C). Although mechanically different from 
the radial thrusting model, the predicted kine-
matic pattern of extension in the northern Pamir 
is the same. Additionally, it has been proposed 
that extension within the northern Pamir is due 
to northward propagation of the right-slip Kara-
koram fault (Ratschbacher et al., 1994; Strecker 
et al., 1995; Murphy et al., 2000). These models 
predict initiation of extension at the southern end 
of the Kongur Shan extensional system, propa-
gating northward, with the greatest magnitude of 
extension along the southern portion of the fault 
system (Fig. 3D). It is also possible that east-west 
extension in the northern Pamir is part of the 
regional east-west extension in Tibet (Armijo et 
al., 1989) or eastern Asia (Yin, 2000). This inter-
pretation implies that extension in the Pamir is 
coeval with other north-trending rifts in Tibet and 
eastern Asia. The results presented below, based 
on fi eld and analytical studies along the northern 
portion of the Kongur Shan extensional system, 
allow us to begin to test the predictions of these 
competing models.

KONGUR SHAN EXTENSIONAL 
SYSTEM

With local relief of over 4 km, the 250-km-
long north-south–trending Muji-Tashkorgan 
Valley and its adjacent >7500 m peaks (Kongur 
Shan and Muztaghata) are some of the most 
prominent topographic features of the Pamir 

salient. The valley is bounded by faults of the 
Kongur Shan extensional system, which we 
divide into four main segments based on geo-
metric and kinematic differences (Fig. 2). The 
northernmost segment is the 60-km-long, south-
southwest–dipping Muji fault. Displacement 
along the Muji fault changes from right slip at 
its western end (Figs. 4A and 4B) to dominantly 
normal slip at its eastern end. At the eastern ter-
minus of the Muji fault, the fault system changes 
abruptly from west-northwest–striking to north 
striking, becoming the Kongur Shan normal 
fault (Fig. 2). The Kongur Shan normal fault 
bounds the western fl ank of the mountain belt 
along the eastern side of the valley for ~150 km, 
dipping moderately (35°–45°) to the west and 
southwest (Figs. 4C and 4D). Field observations 
and interpretation of satellite images indicate 
normal slip, with little or no strike-slip com-
ponent. Offset along the Kongur Shan normal 
fault dies out ~45 km south of the peak of Muz-
taghata, and extension is transferred to the east-
dipping Tashkorgan normal fault via the 20-km-
long, steeply west-northwest–dipping Tahman 
normal fault (Fig. 2). The Tashkorgan normal 
fault continues south for ~50 km, bounding the 
western side of the Tashkorgan Valley (Fig. 2). 
Field observations and interpretation of satel-
lite images indicate that normal slip along the 

Tashkorgan normal fault decreases to the south. 
Mountains to the west of the city of Tashkorgan 
have well-defi ned triangular facets bounded 
by the Tashkorgan fault, whereas farther south 
topography is subdued, with no obvious expres-
sion of the fault (Figs. 4E and 4F). Additionally, 
the topographic relief of the western side of the 
valley also decreases southward, where the trace 
of the Tashkorgan fault becomes obscured.

PETROLOGY

The hanging wall and footwall of the north-
ern portion of the Kongur Shan extensional 
system consist of medium- to high-grade meta-
morphic rocks. Petrologic studies were carried 
out in order to determine metamorphic mineral 
assemblages, trends in metamorphic grade, and 
deformation fabrics and kinematic indicators.

Electron microprobe analyses were obtained 
from selected samples to constrain peak 
pressure-temperature conditions (GSA data 
repository).1 Analyses were obtained using a 

1GSA Data Repository item 2004107, mineral com-
position and 40Ar/39Ar isotopic data, is available on the 
Web at http://www.geosociety.org/pubs/ft2004.htm. 
Requests may also be sent to editing@geosociety.org.

Direction of Propagation 
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C D

Figure 3. Models for the evolution of east-west extension in the Pamir. (A) Synorogenic exten-
sion related to motion along the Main Pamir thrust (Brunel et al., 1994). (B) Radial thrusting 
along the Main Pamir thrust (Strecker et al., 1995). (C) Oroclinal bending of the Pamir–west-
ern Himalayan region (Yin et al., 2001). (D) Northward propagation of the right-slip Kara-
koram fault (Ratschbacher et al., 1994; Strecker et al., 1995; Murphy et al., 2000).
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1 µm spot size (5 µm spot size for plagioclase 
analyses) with a 15 kV accelerating voltage, a 
1.5 × 10–8 beam current, and a 20 second count-
ing time for each element. Activities of phases 
and equilibrium Clapeyron slopes of exchange 
and net-transfer reactions were calculated using 
the programs AX and THERMOCALC 2.7 
(Powell et al., 1998). Element maps and electron 
microprobe traverses were obtained to identify 
zoning patterns in garnets to interpret the pres-
sure-temperature results.

Pressures and temperatures of equilibrium 
were calculated using the garnet-biotite exchange 
thermometer, and at least one of three net- transfer 
barometers: grossular + 2Al

2
SiO

5
 + quartz = 

3 anorthite (GASP) 3 anorthite + 6 ilmenite + 
3 quartz = grossular + 2 almandine + 6 rutile 
(GRIPS) 3 ilmenite + 2 quartz + Al

2
SiO

5
 = 

almandine + 3 rutile (GRAIL) Metamorphic 
temperatures were obtained from garnet-biotite 
pairs using rim analyses (within the outer 10–20 
microns) of garnet and analyses of biotite grains 
adjacent to garnet analyses. As analyses of pla-
gioclase, ilmenite, and rutile did not show sig-
nifi cant variation in composition, GASP, GRIPS, 
and GRAIL results were obtained using mean 
plagioclase, rutile, and ilmenite compositions 
with individual garnet analyses. Quartz and alu-
minosilicate phases were assumed to be pure.

Hanging Wall

The hanging wall of the Kongur Shan exten-
sional system is composed of two lithologic 
units: (1) a structurally higher metasedimentary 
unit, Pz

sch1
, which is intruded by granitic bod-

ies, and (2) a structurally lower metagraywacke 
unit, Pz

gw1
 (Figs. 5A and 5B). Pz

sch1
 consists 

of medium- to high-grade metapelitic schists 
interlayered with micaceous quartzite, and 
minor amphibolite and marble. Petrologic 
studies indicate that the unit is part of a low-
pressure, medium- to high-temperature Buchan 
metamorphic terrane, with a pronounced east-
ward increase in metamorphic grade (Fig. 6). 
Metapelites at the northwestern portion of the 
hanging wall, 15 km east of the town of Muji, 
are greenschist-facies biotite-chlorite schists. 
Metamorphic grade increases to the east with 
the successive appearance of andalusite, stau-
rolite, garnet, sillimanite, and culminating 
in the appearance of K-feldspar, indicating 
upper-amphibolite- to granulite-facies meta-
morphic conditions. Garnets within the K-feld-
spar–bearing region are zoned with increasing 
Fe/(Fe + Mg) toward the rim, interpreted to 
represent diffusion zoning, and indicate that 
thermobarometry results would not refl ect peak 
metamorphic conditions. However, the presence 
of andalusite throughout much of the hanging 
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wall restricts peak pressures in those regions to 
<4 kbar. The transition directly from andalusite 
grade to sillimanite grade with no kyanite also 
suggests that the sillimanite-grade portion of 
the hanging wall was at similarly low pressures. 
Metamorphic K-feldspar, assuming the pres-
ence is related to crossing the second sillimanite 
isograd, suggests minimum peak metamorphic 
temperatures of ~650–700 °C for the inferred 
pressures of 4–5 kbar along the eastern portion 
of the hanging wall (Spear and Cheney, 1989).

The structurally lower metagraywacke unit, 
Pz

gw1
, is exposed directly west of the Kongur 

Shan massif (Fig. 5A), as well as farther south, 
northwest of the Muztaghata massif. It consists 
of light gray-green calcareous quartzites and 
dark gray slates, with minor layers of marble 
and amphibolite. Typical assemblages are 
quartz + white mica + calcite ± plagioclase ± 
chlorite, indicating greenschist-facies metamor-
phic conditions.

Footwall

Muji Fault and Qimugang Creek Area
The footwall of the Muji fault and northwest-

ern portion of the Kongur Shan normal fault 
footwall are composed of two main lithologic 
units: (1) a structurally higher heterogeneous 
metasedimentary unit, Pz

sch
, exposed along the 

Muji fault and the Qimugang Creek portion 
of the Kongur Shan fault (Fig. 5A), and (2) a 
structurally lower metagraywacke unit, Pz

gw
, 

exposed along the Qimugang Creek portion of 
the Kongur Shan fault (Fig. 5A).

Pz
sch2

 can be divided into two subunits based 
on compositional variations, the transition 
between which is gradational and not shown 
on Figure 5A. The structurally higher subunit 
is exposed within the footwall of the Muji fault 
and consists of calcareous quartzite, marble, and 
micaceous quartzite, with minor layers of pelitic 
schist and mafi c metavolcanics. Schist layers are 
heavily retrograded, with chlorite replacement 
of biotite, garnet, and staurolite. Retrograde 
alteration decreases progressively to the east and 
south, with schist layers preserving amphibolite-
facies assemblages of sillimanite + garnet at the 
juncture of the Muji and Kongur Shan faults. 
The structurally lower subunit is exposed along 
the Qimugang Creek portion of the Kongur 
Shan normal fault and is less compositionally 
heterogeneous, consisting of pelitic schists and 
micaceous quartzite, with infrequent thin layers 
of marble and metavolcanics. Schists are garnet-
kyanite–bearing, consistent with this subunit 
being a structurally deeper portion of Pz

sch2
.
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Peak metamorphic conditions were deter-
mined from two garnet-kyanite–bearing schists, 
AR5/30/00-2 and AR6/2/00-3b, along the 
Qimugang Creek portion of the Kongur Shan 
fault (Figs. 5A and 7A). Garnets from both 
samples show signifi cant compositional zoning 
(Fig. 8), with decreasing Fe/(Fe + Mg) toward 
the rim, indicating growth zoning. Pressure-
temperature conditions were calculated using 
the garnet-biotite geothermometer and GRAIL, 
GASP, and GRIPS geobarometers, with both 
samples yielding peak metamorphic conditions 
of 8–9 kbar and 600–700 °C (Fig. 9).

Footwall metagraywacke unit Pz
gw2

 consists 
of fi ne- to medium-grained red to beige meta-
graywacke and calcareous metagraywacke, 
with infrequent layers of coarse metacon-
glomerate. Metaconglomerate layers contain 
matrix-supported clasts of marble and gray-
wacke. Typical mineral assemblages for the 
fi ne- and medium-grained metagraywacke are 
quartz + plagioclase + smectite ± calcite with 
trace opaque minerals (Fig. 7B), indicating 
low-grade metamorphic conditions.

Kongur Shan Massif
Footwall rocks of the Kongur Shan massif 

are composed of medium-grained quartzofeld-
spathic mylonitic gneisses with minor layers 
of quartz-rich schist and biotite schist (Pz

gn2
, 

Figures 5A and 5B). Pelitic schist layers within 
the Kongur Shan gneisses along the Ghez river 
contain garnet + kyanite ± staurolite, indicating 
amphibolite-facies metamorphic conditions. 
Minor retrograde replacement of biotite by 
chlorite is common. North of the Ghez river, 
quartzofeldspathic mylonitic gneisses of the 

3
9
° 

0
0
' N 3

9
° 0

0
' N

3
8
° 5

0
' N

74° 30' E

74° 30' E

74° 45' E

74° 45' E

74° 15' E

Sillimanite+Biotite+
Garnet±K-feldspar

20 km

Muji

Biotite-Chlorite

Andalusite+Biotite
±Staurolite±Garnet

Sillimanite+Biotite
+Staurolite+Garnet

Al2SiO5+Biotite+
Garnet

Andalusite and 
Sillimanite

K
o

n
g
u
r

S
han

normal fault

INCREASING METAMORPHIC GRADE

Thrust fault

Normal fault

Pzsch2

Pzgw2

Pzsch1

Pzsch1

Trg

Trg

Trg

Trg

Q

Q

Q

Figure 6. Simplifi ed geologic map of the northern portion of the hanging wall of the Kongur 
Shan extensional system showing the sample locations and key mineral assemblages from 
each sample locality. Metamorphic grade increases from west to east, from biotite-chlorite 
grade to K-feldspar-sillimanite grade. Lithologic units are the same as in Figure 5.

1.0 mm

GrtGrt

MsMs

QtzQtz

QtzQtz

A B

GrtGrt

KyKy

0.5 mm

Figure 7. Photomicrographs of amphibolite-facies schist from the footwall unit Pz
sch2
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massif grade into mylonitic calcareous quartz-
ites, schistose quartzites, and mafi c schists.

Analytical results to determine peak 
metamorphic conditions were obtained from 
sample AY8/29/99-2, a garnet-kyanite-stauro-
lite–bearing schist (with staurolite occurring 
as inclusions in the garnet) located along 
the western fl ank of the Kongur Shan mas-
sif directly below the surface of the fault 
(Fig. 5A). Garnet from sample AY8/29/99-2 is 
compositionally zoned, with decreasing Fe/(Fe 
+ Mg) toward the rims, indicating preservation 
of growth zoning. Results from the GRAIL 
barometer and garnet-biotite thermometer 
yield pressure-temperature conditions of ~8 
kbar, 650–750 °C (Fig. 10). The presence of 
kyanite and absence of sillimanite suggest that 
the higher-temperature portions of the data 
may not correspond to peak equilibrium condi-
tions due to minor retrograde reactions. Alter-
natively, the sample may have passed from the 
kyanite to the sillimanite stability fi eld without 
growing sillimanite during isobaric heating at 
peak pressures. Our analytical results indicate 
higher grade of metamorphism for the Kongur 
Shan gneisses than that cited by Brunel et al. 

(1994) of 5–6 kbar and 500 °C from samples 
of the same composition (garnet-kyanite-stau-
rolite–bearing schists). However, as the source 
of their estimates is not given, the origin of the 
discrepancy cannot be evaluated.

Twenty kilometers east of the range front, 
mylonitic gneisses (Pz

gn
) are separated from 

a unit of massive beige to light-red metagray-
wacke (Pz

gw2
) by the right-slip Ghez fault 

(Figs. 5A and 5B). The metagraywacke (Pz
gw2

) 
is dominated by thick (hundreds of meters) 
layers of micaceous quartzite and minor lay-
ers of phyllite (quartz ± muscovite ± chlorite ± 
biotite). All exposures of metagraywacke within 
the footwall of the Kongur Shan normal fault 
are considered part of the same lithologic unit, 
Pz

gw2
, based on lithologic similarities. The pres-

ence of biotite in Pz
gw2

 east of the Kongur Shan 
massif suggests higher metamorphic conditions 
than along the Qimugang Creek area. Finally, 
although similar in metamorphic grade to hang-
ing-wall metagraywacke Pz

gw1
, differences in 

color, higher amounts of carbonate, and the 
abundance of interbedded marbles and dark 
gray slates all suggest Pz

gw1
 is a lithologically 

distinct unit from Pz
gw2

.

Plutonic Bodies

Igneous bodies along the northern portion 
of the Kongur Shan extensional system are 
identifi ed as Late Permian to early Mesozoic 
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Figure 9. Thermobarometry results from 
footwall schists from footwall unit Pz

sch2
 

indicating peak metamorphic conditions 
of 8–9 kbar and 600–700 °C. Boxes show 
regions where the different thermobarom-
eters intersect.

Figure 10. Thermobarometry results from 
footwall schists along the Kongur Shan mas-
sif indicating peak metamorphic conditions 
of ~8.5 kbar, 650–750 °C. Boxes bracket 
the region where the different thermoba-
rometers intersect. Circles within the box 
are where garnet-biotite pairs and GRAIL 
analyses using the garnet analysis from the 
thermometry intersect.
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in age (Pan, 1992, 1996) (Tr
g
, Fig. 5A). They 

are correlated with plutons of the Late Paleo-
zoic–early Mesozoic South Kunlun terrane 
(Pan, 1992, 1996; Youngun and Hsu, 1994; 
Matte et al., 1996), which yield dominantly 
Triassic to Early Jurassic U-Pb zircon ages 
(Pan, 1992, 1996; Matte et al., 1996; Cowgill 
et al., 2003).

Igneous intrusions within the hanging wall 
consist primarily of several large granitic bodies 
(tens of square kilometers in areal extent) within 
unit Pz

sch1
 (Figs. 2 and 5A). Biotite granites are 

unfoliated to weakly foliated and found within 
the lower-grade portion of unit Pz

sch1
 (andalu-

site-grade and lower, Figure 6). Biotite-horn-
blende granites are weakly to moderately foli-
ated and found within the higher-grade portion 
of unit Pz

sch1
. Small pegmatitic dikes (tens of 

centimeters to several meters), veins, and pods 
also occur within Pz

sch1
, with variable mineral 

compositions of quartz + plagioclase + tourma-
line ± K-feldspar ± biotite ± muscovite ± garnet. 
Pegmatitic bodies are unfoliated, intrude sub-
parallel to foliation within the metasedimentary 
units and crosscut the larger granitic plutons.

Within the footwall, large (>1 km thick) gra-
nitic sills with well-developed mylonitic fabrics 
are interlayered with Pz

gn
, forming the core of 

the Kongur Shan massif (Figs. 5A and 5B). 
North of the Ghez river, smaller (≤100 m thick) 
granitic sills are found within Pz

gn
, becoming 

less abundant farther north. Igneous bodies are 
rare within Pz

sch2
, consisting of small veins and 

dikes of granitic composition. No igneous bod-
ies were observed within either metagraywacke 
unit (Pz

gw1
 or Pz

gw2
).

STRUCTURAL GEOLOGY

Hanging-Wall Structures

Metamorphic rocks from hanging-wall unit 
Pz

sch1
 have been pervasively ductilely deformed. 

Foliations in the metasedimentary rocks have 
a consistent northwest strike with moderate to 
steep dips and variable dip direction. Stretching 
lineations are common, defi ned by elongated 
quartz rods, and trend northwest with shallow 
to subhorizontal plunges. Schists generally have 
well-developed shear fabrics, with kinematic 
indicators such as rotated porphyroclasts, inclu-
sion trails, and S-C shear fabrics showing right-
slip sense of shear. Based on these observations, 
hanging-wall schists are interpreted to have been 
part of a right-slip ductile shear zone. Deforma-
tion appears to have occurred synchronously 
with or prior to peak metamorphic conditions, 
as evidenced by spiral inclusion patterns in 
garnet and staurolite and by small fi brolite mats 
overprinting foliation, respectively.

The contact between the hanging-wall schists 
(Pz

sch1
) and hanging-wall metagraywacke unit 

(Pz
gw1

) is the Baoziya fault (Figs. 5A and 5B). 
Where exposed along the Karakoram Highway 
south of the Kongur Shan massif, the fault dips 
moderately (~25°) to the west-northwest and 
carries high-grade schists of Pz

sch1
 in its hanging 

wall, separated from metagraywacke unit Pz
gw1

 
in its footwall by an ~1-m-thick gouge zone. 
Shear fabrics in the gouge zone and underlying 
metagraywacke indicate top-to-the-south sense 
of shear (Pan, 1992, and our own fi eld observa-
tions). The juxtaposition of high-grade rocks 
over low-grade rocks indicates that the Baoziya 
fault is a south-directed thrust.

Footwall Structures

Along the western fl ank of the Kongur Shan 
massif, the Kongur Shan normal fault dips ~30°–
45° to the west and is commonly associated with 
a 20–40-m-thick zone of chloritic breccia within 
the footwall. Structurally below the fault surface, 
gneisses, schists, and plutonic rocks are strongly 
mylonitized, with west-plunging mineral linea-
tions (Fig. 5A) and S-C mylonitic fabrics indi-
cating top-to-the-west shear (Fig. 11A) (Brunel 
et al., 1994, and our own fi eld observations). 
Along the Ghez river, footwall foliations within 
Pz

gn
 and the granitic sills defi ne a structural 

dome (Brunel et al., 1994), with dip directions 
varying systematically from west to east as one 
moves eastward into the footwall. Mylonitic 
lineations also rotate clockwise toward the east 
near the Ghez fault, from a westerly trend to a 
northerly trend (Fig. 5A).

Although the Kongur Shan normal fault was 
not directly observed south of the junction with 
the Muji fault, two lines of evidence suggest 
that the dip of the fault is signifi cantly shallower 
there than along the Kongur Shan massif to the 
south. (1) Assuming the fault is relatively pla-
nar, projection of the topographic expression of 
the trace of the fault ~5 km south of Qimugang 
Creek onto a cross section indicates that the 
fault surface dips ~20° to the west-southwest 
(cross section B–B′, Fig. 5C). (2) The topo-
graphic slope of the footwall along Qimugang 
Creek, where not incised, dips 17°–18° to the 
west and appears to be very planar (Fig. 11B). 
We interpret this slope to be the exhumed fault 
zone, implying an ~20° dipping fault.

Northwest of the Kongur Shan massif and 
west of the main range-bounding Kongur 
Shan fault is the Qiaklak fault (Figs. 5A and 
5C). The Qiaklak fault is expressed as a linear 
escarpment in Quaternary sediments in the Muji 
Valley with apparent down-to-the-west normal 
offset (Figs. 4C and 4D), and has outcrops of 
metagraywacke unit Pz

gw2
 within the northwest 

portion of its footwall. Both ends of the Qiaklak 
fault merge with, or are truncated by, the Kon-
gur Shan normal fault (Fig. 5A).

North of the Qiaklak fault, mafi c schists 
of Pz

gn
 are separated from metagraywacke 

unit Pz
gw2

 by the Kalagile fault (Fig. 5A). The 
contact between the two units is not exposed 
but is overlain by a zone of heavily faulted 
metagraywacke (Pz

gw2
) with numerous gouge 

zones, which dip steeply (60°–70°) to the west 
to northwest. Shear fabrics in the gouge zones 
within Pz

gw2
 show top-to-the-west sense of 

shear, indicating normal sense of displacement 
along the fault. The southeastern tip of the 
Kalagile fault appears to merge with the Kongur 
Shan normal fault.

Along the eastern fl ank of the Kongur Shan 
massif, mylonitic gneisses (Pz

gn
) and granites are 

juxtaposed against lower-grade metagraywacke 
unit Pz

gw2
 across the north-northwest–striking 

Ghez fault of Brunel et al. (1994) (Figs. 5A and 
5B). Where exposed, the fault dips steeply (70°–
80°) to the east, with a thin (10–15 cm) gouge 
zone. Rocks for several kilometers on either side 
of the fault are ductilely sheared, with subverti-
cal foliations striking to the north-northwest, 
and subhorizontal mineral stretching lineations. 
Kinematic indicators (rotated porphyroclasts 
and S-C shear fabrics) within the shear zone in 
both the mylonitic gneisses and metagraywacke 
show right-slip sense of shear.

East of the Ghez fault, metagraywacke of unit 
Pz

gw2
 is deformed by large northeast-vergent 

overturned to upright isoclinal folds (ampli-
tudes of >1 km) (Fig. 5A). Map-scale fold axes 
trend west-northwest and are truncated by the 
Ghez fault. Smaller-scale folds with similar ori-
entations and amplitudes of several centimeters 
are observed at the outcrop scale. Folding style 
of Pz

gw2
 along the Qimugang Creek portion of 

the footwall is similar to that observed east of 
the Kongur Shan massif, with large northwest-
trending overturned isoclinal folds (amplitudes 
of >1 km). Smaller northwest-trending asym-
metric folds (amplitude of several centimeters) 
and en echelon quartz veins (Fig. 10C) are 
common in Pz

gw2
, with both showing top-to-the-

north-northeast sense of shear.
Along the Muji fault, footwall unit Pz

sch2
 

is deformed by large east-northeast–trending 
upright, tight to open folds with amplitudes of 
≤1 km and wavelengths of ~500 m to >1 km 
(Figs. 5A and 11D). Large folds within Pz

sch2
 

are not observed along the Kongur Shan normal 
fault, with only outcrop-scale northeast-vergent 
overturned folds. Near the contact between 
footwall units Pz

sch2
 and Pz

gw2
, schists of Pz

sch2
 

are ductilely sheared with northeast-trending 
mineral-stretching lineations and kinematic 
indicators (rotated porphyroblasts, mica fi sh, 
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Figure 11. (A) Field photo of S-C mylonitic fabric in footwall gneisses of the Kongur Shan massif immediately below the fault surface. Photo 
is to the north, with shear indicators showing top-to-the-west sense of shear. Field of view is ~15 cm across. (B) Field photo looking north-
northwest from the town of Muji at the footwall of the Qimugang Creek portion of the Kongur Shan fault. The active fault lies along the 
base of the mountain. The planar, low topographic grade of the western fl ank of the mountain is interpreted to be the exhumed fault surface. 
(C) Tension gashes in footwall metagraywacke unit Pz

gw2
 showing top-to-the-northeast sense of shear. Photo is to the southeast. Lense cap 

(6 cm) for scale. (D) Isoclinal folds deforming schists and marble in footwall unit Pz
sch2

 along eastern portion of the Muji fault. Photo is to 
the northeast. (E) Field photo looking to the northeast at the head of the Qimugang Valley. The upper unit is amphibolite-facies schists of 
Pz

sch2
, and the lower unit is low-grade metagraywacke of Pz

gw2
. The subhorizontal contact between the units is the north-northeast–directed 

Shala Tala thrust. Photo is to the northeast. (F) High-angle fault (bold line) cutting the Shala Tala thrust. Sense of motion on the high-angle 
fault is interpreted to be normal. Photo is to the northwest.
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and occasional S-C tectonite fabrics) showing 
top-to-the-northeast sense of shear.

Schists of unit Pz
sch2

 are separated from the 
structurally lower metagraywacke (Pz

gw2
) by 

the Shala Tala fault (Figs. 5A and 5C). Where 
exposed, the fault is defi ned by a gouge zone 
(<1 m to ~10 m thick) with a low to moderate 
dip angle and variable dip direction (Fig. 11E). 
The juxtaposition of higher-grade over lower-
grade rocks indicates the Shala Tala fault is a 
thrust. Shear fabrics in the gouge zone of the 
fault indicate top-to-the-north or top-to-the-
northeast sense of shear, consistent with kine-
matic indicators within both Pz

sch1
 and Pz

gw1
. 

The variable dip direction indicates that the fault 
may have been subsequently folded.

In the Qimugang Creek area, northwest-strik-
ing high-angle faults cut the Shala Tala thrust 
(Figs. 5A, 5C, and 11F). As they strike subpar-
allel with the active Kongur Shan normal fault, 
they are interpreted to be normal faults, related 
to recent east-west extension. The magnitude of 
displacement across these faults is unknown due 
to a lack of marker beds in unit Pz

gw2
.

U-Pb ZIRCON GEOCHRONOLOGY

U-Pb Methods

Zircons were obtained from two samples 
using standard rock-crushing and mineral 
separation techniques, mounted in epoxy 
with zircon standard AS3 (age 1099.1 Ma, 
Paces and Miller, 1993) and Au coated. U-Pb 

analyses were obtained with the University of 
California at Los Angeles (UCLA) CAMECA 
ims 1270 ion microprobe using an O– primary 
beam of ~10 nA focused to an ~15 × 20 µm 
spot. U-Pb ratios were determined by using a 
calibration curve based on UO/U versus Pb/U 
determined from the zircon standard. Isotope 
ratios were corrected for common lead based 
on a 204Pb correction using the model of Stacey 
and Kramers (1975).

U-Pb Results

Sample AR5/28/00-4 is a weakly foliated 
biotite granite in hanging-wall unit Pz

sch1
 

located ~15 km south-southeast of the town of 
Muji (Fig. 5A). Seven zircons were analyzed 
(Fig. 12A; Table 1). Five analyses yielded 
results that lie on or just above concordia and 
form a cluster with a weighted mean 206Pb/238U 
age of 217 ± 3 Ma (MSWD = 0.64), interpreted 
to be the age of the granite. Two zircons yielded 
discordant analyses that lie along a chord 
between the interpreted emplacement age and 
an upper intercept of ca. 1150 Ma.

Sample AY9/3/99-3 is a biotite-hornblende 
mylonitic granite sill from the footwall of the 
Kongur Shan normal fault ~15 km east of the 
range front along the Ghez river (Fig. 5A). 
Eleven analyses were obtained from nine zir-
con grains (Fig. 12B; Table 1). Results defi ne 
a spread of generally concordant ages from 
260 to 186 Ma, with all but one analysis fall-
ing between 215 and 260 Ma. We interpret 

these ages to indicate mixing between two age 
domains within the zircons, an older core and 
a younger rim. This interpretation is supported 
by results from a zircon that yielded a rim 206Pb/
238U age of 221 ± 9 Ma and a core 206Pb/238U 
age of 245 ± 5 Ma. The rims of the zircon are 
characterized by oscillatory magmatic zoning 
and thus are unlikely to represent metamorphic 
overgrowths. The age of the granite is inter-
preted to be represented by the younger ages 
(220–230 Ma), with the youngest age the result 
of resetting during a later thermal event.

Th-Pb MONAZITE GEOCHRONOLOGY

In situ Th-Pb ages were obtained for mona-
zite grains occurring as inclusions in garnet 
from each of the three high-grade metamorphic 
units (Pz

sch1
, Pz

sch2
, and Pz

gn
, Fig. 5A). As garnet 

appears at slightly higher metamorphic condi-
tions than monazite in most pelitic compositions 
during prograde metamorphism (Wing et al., 
2003), monazite inclusions can be interpreted 
to date metamorphic events associated with 
garnet growth (Harrison et al., 1997; Catlos et 
al., 2002) as a result of either sluggish kinetics 
(Cherniak et al., 2004; cf. Smith and Giletti, 
1997) or shielding from subsequent lead loss by 
the garnet (Montel et al., 2000).

Th-Pb Methods

Monazite grains occurring as inclusions 
in garnet and within the matrix of samples 
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Figure 12. Concordia plots of individual ion microprobe analyses of zircons from granites of the Kongur Shan extensional system. Error 
ellipses are 1σ. (A) Results from sample AR5/28/02-4 yield fi ve concordant analyses that form a cluster with a weighted mean 206Pb/238U age 
of 217 ± 3 Ma, interpreted to be the age of the granite. Two discordant analyses lie along a chord with an upper intercept of ca. 1150 Ma. (B) 
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the cores of zircons, while most rim ages fall at 220–230 Ma. The age of the granite is interpreted to be Middle Triassic.
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were located in polished thin sections using 
a scanning electron microscope (SEM) with 
an energy-dispersive spectrometer (EDS). 
Relevant portions of the thin sections were 
mounted in epoxy with several monazite stan-
dard grains (monazite standard 554 with an age 
of 45 ± 1 Ma; Harrison et al., 1999) and Au 
coated. Th-Pb analyses were obtained in situ 
using similar conditions to the zircon analyses, 
except that Th-Pb ratios were determined using 
a calibration curve of ThO

2
/Th versus Pb/Th 

determined from the standard.

Hanging Wall

Sample AR4/29/00-3a is a garnet-sillimanite–
bearing schist located in the high-grade, K-feld-
spar–bearing portion of the hanging-wall unit 
Pz

sch1
 (Fig. 5A). Thirteen monazite grains were 

analyzed: ten from monazite inclusions in gar-
net and three from monazite within the matrix. 
208Pb/232Th ages range from 235 to 195 Ma, with 
most analyses falling between 230 and 200 Ma 
(Fig. 13A; Table 2). Multiple monazite inclu-
sions from single garnets yield a spread of ages 

with no discernable spatial pattern, and with the 
same distribution in ages from matrix monazites. 
These results are interpreted to indicate that gar-
net growth and peak metamorphic conditions in 
the hanging wall occurred during the Late Trias-
sic between 200 and 230 Ma.

Footwall

Sample AR5/30/00-2, used in thermobaromet-
ric analyses of footwall unit Pz

sch2
, was analyzed 

to date the timing of high-grade meta morphism 

TABLE 1. ZIRCON U-Pb ISOTOPIC DATA

Spot ID† Isotopic ratios Ages ± 1 s.e.

206Pb*/238U ± 1 s.e. 207Pb*/235U ± 1 s.e.‡ 207Pb*/206Pb ± 1 s.e.‡ 206Pb*
(%)

206Pb*/238U 207Pb*/235U 207Pb*/206Pb

AY9/3/99-3
8, 1 3.78E-02 1.06E-03 2.35E-01 3.83E-02 4.52E-02 6.83E-03 92.98 239.0 ± 6.6  214.4 ± 31.4  negative
10, 1 2.94E-02 4.24E-04 2.04E-01 3.57E-03 5.03E-02 5.89E-04 99.71 186.6 ± 2.7 188.2 ± 3.0 207.2 ± 27.2
4, 1 3.59E-02 5.26E-04 2.45E-01 5.61E-03 4.94E-02 9.13E-04 99.62 227.1 ± 3.3 222.1 ± 4.6 168.9 ± 43.1
4, 2 3.44E-02 5.21E-04 2.40E-01 5.56E-03 5.06E-02 8.75E-04 99.33 217.8 ± 3.2 218.1 ± 4.6 221.6 ± 40.0
3, 1 3.84E-02 1.53E-03 2.70E-01 2.95E-02 5.10E-02 4.91E-03 98.85 242.7 ± 9.5  242.5 ± 23.6  239.8 ± 222.1
24, 1 4.10E-02 1.28E-03 2.80E-01 1.74E-02 4.95E-02 2.39E-03 99.33 259.1 ± 8.0  250.5 ± 13.8  171.2 ± 112.6
22, 1 4.17E-02 1.15E-03 2.97E-01 1.16E-02 5.18E-02 1.20E-03 99.26 263.1 ± 7.1 264.3 ± 9.0  274.8 ± 53.22
15, 1 3.93E-02 9.40E-04 2.77E-01 9.37E-03 5.11E-02 1.14E-03 99.74 248.5 ± 5.8 248.3 ± 7.5  246.8 ± 51.52
21, 1 3.42E-02 1.35E-03 1.94E-01 1.62E-02 4.11E-02 2.80E-03 99.07 216.6 ± 8.4  179.7 ± 13.8  negative
21, 2 3.89E-02 9.00E-04 2.67E-01 1.02E-02 4.98E-02 1.30E-03 99.55 245.7 ± 5.6 240.2 ± 8.1  186.8 ± 60.89
23, 1 3.92E-02 7.13E-04 2.73E-01 1.03E-02 5.05E-02 1.44E-03 99.49 248.1 ± 4.4 245.4 ± 8.2  219.3 ± 65.74

AR5/28/00-4
40, 1 3.36E-02 1.14E-03 2.38E-01 1.38E-02 5.15E-02 2.04E-03 99.64 212.8 ± 7.1 217.0 ± 11.3 263.0 ± 90.7
25, 1 5.06E-02 3.14E-03 4.44E-01 3.85E-02 6.36E-02 3.67E-03 100  317.9 ± 19.2 372.7 ± 27.1  728.9 ± 122.2
26, 1 3.32E-02 1.12E-03 2.19E-01 1.24E-02 4.80E-02 2.15E-03 99.64 210.3 ± 7.0 201.4 ± 10.3   97.9 ± 105.8
23, 1 1.44E-01 4.63E-03 1.50E+00 5.86E-02 7.54E-02 1.27E-03 100  867.8 ± 26.0 929.5 ± 23.8 1079.0 ± 33.67
24, 1 3.33E-02 1.40E-03 2.15E-01 1.68E-02 4.67E-02 2.62E-03 99.16 211.4 ± 8.8 197.5 ± 14.1  34.38 ± 134.3
28, 1 3.49E-02 6.67E-04 2.32E-01 1.08E-02 4.82E-02 1.83E-03 99.42 220.8 ± 4.2 211.6 ± 8.87  110.3 ± 89.59
22, 1 3.46E-02 1.00E-03 2.40E-01 1.36E-02 5.03E-02 2.13E-03 99.34 219.4 ± 8.2 218.6 ± 11.2  209.3 ± 97.91

†Spot ID: #,# = zircon number, spot number.
*Radiogenic Pb corrected for common Pb with composition 206Pb/204Pb = 18.35, 207Pb/204Pb = 15.61, 208Pb/204Pb = 37.48 estimated from model of Stacey and Kramers (1975).
‡s.e.: standard error.
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Figure 13. Results from in situ ion microprobe dating of monazite grains from different high-grade schists along the northern portion of 
the Kongur Shan extensional system. (A) Analyses from hanging-wall unit Pz

sch1
, with a spread in both inclusion ages and matrix ages from 

200 to 230 Ma interpreted to date timing of peak metamorphism. (B) Analyses from footwall unit Pz
sch2

, with a spread in both inclusion 
ages and matrix ages from ca. 110 to 130 Ma interpreted to date timing of peak metamorphism. Horozontal gray line is the muscovite total 
gas age from the same sample. (C) Gneisses of the Kongur Shan massif showing inclusion ages with a weighted mean age of 9.37 ± 0.8 Ma 
interpreted to date the timing of peak metamorphism. Two analyses from the matrix yield the same age, while two others are signifi cantly 
younger and are interpreted to be reset (see discussion in text). Error bars are ±1σ.
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in that unit (Fig. 5A). Sixteen monazite grains 
were analyzed: ten monazite inclusions in gar-
net and eight monazite grains within the matrix. 
Ages from monazite inclusions and the matrix 
yield 208Pb/232Th ages that range between 130 
and 110 Ma, with one age of 142 Ma falling 
outside the distribution (Fig. 13B; Table 2). 
These results are interpreted to date high-grade 
metamorphism of footwall unit Pz

sch2
 as middle 

Cretaceous between 110 and 130 Ma.
Sample AY8/29/99-2, used in thermobaromet-

ric analyses of footwall unit Pz
gn2

, was analyzed 
to date the timing of high-grade metamorphism 
of the Kongur Shan gneisses (Fig. 5A). Ten 
Th-Pb ages were obtained from eight monazite 
grains: six monazite inclusions within garnets 
and four analyses from monazite located in the 
matrix of the sample. All six analyses of mona-
zite inclusions in garnet yielded Late Miocene 
208Pb/232Th ages between 9 and 10 Ma with a 

weighted mean age of 9.37 ± 0.09 Ma (MSWD = 
1.57) (Fig. 13C; Table 2). Two of the four matrix 
monazite analyses yielded ages of ca. 9 Ma, 
indistinguishable from the monazite inclusion 
ages. This age is interpreted to date the timing of 
garnet growth during high-grade metamorphism. 
Two other matrix analyses yielded younger ages 
of 5.8 Ma and 3.7 Ma, interpreted to be a result 
of recrystallization or dissolution/reprecipitation 
during uplift and mylonitization (Harrison et al., 
2002). As a side note, these results provide a cau-
tionary example for interpreting bulk monazite 
U-Pb ages in terms of metamorphic events.

THERMOCHRONOLOGY

40Ar/39Ar Methods

Six to 7 mg of mica separates, and ~18 mg 
of K-feldspar, were obtained using standard 

mineral separation techniques and handpicked 
in order to further purify the separates. Mineral 
separates and sanidine fl ux monitors were irra-
diated at the Ford reactor, University of Michi-
gan, and the McMaster reactor, McMaster Uni-
versity, for 45 hours and 15 hours, respectively 
in fi ve different irradiations (designated UM98, 
UM101, UM104, UM105, and UM109). Two 
different sanidine standards were used during 
the course of the analyses to determine reactor 
neutron fl ux: Fish Canyon Tuff (27.8 Ma) (Ceb-
ula et al., 1986; Renne et al., 1994) and Taylor 
Creek Tuff (28.1 Ma) (Renne et al., 1998). 
After irradiation, samples were step-heated in 
a Ta crucible in a double vacuum furnace, and 
isotopic compositions of the released gas were 
determined using a gas-source automated mass 
spectrometer. Isotopic data were reduced using 
an in-house data reduction program, AGECAL. 
Age uncertainties are reported at the 1σ level 
and do not include uncertainties in J-Factor or 
decay constants (Figs. 14, 15, 16, and 17; GSA 
data repository).

Hanging Wall

Six muscovite samples and one biotite 
sample were analyzed from schists and granites 
within hanging-wall unit Pz

gn1
 (Fig. 5A). All 

the analyses yielded Middle to Late Jurassic 
total gas ages (Fig. 14; Table DR1) from 134 to 
172 Ma, with most of the total gas ages falling 
between 155 and 165 Ma. Analyses also show 
signifi cant age gradients over the fi rst several 
temperature steps, with some samples increas-
ing from <100 Ma to 150–160 Ma over the fi rst 
20%–30% of the gas released (i.e., sample AR6/
5/00-1a). This variation in age is interpreted to 
be the result of diffusional loss of Ar from sam-
ples with a preserved age gradient (e.g., Grove 
and Bebout, 1995), and thus suggests that the 
hanging-wall schists cooled slowly through the 
mica closure temperature. Similar ages between 
schists, granites, and late pegmatite dikes indi-
cate that all analyses represent cooling ages 
postdating igneous and metamorphic events.

Ghez River Transect

Five samples were analyzed from granites 
and gneisses from the same footwall tran-
sect along the Ghez river used by Arnaud et 
al. (1993) (Fig. 5A). 40Ar/39Ar age spectra 
from muscovite and biotite analyses are rela-
tively fl at, indicating rapid cooling (Fig. 15; 
Table DR1). Weighted mean gas ages are 
interpreted to best represent the timing of bulk 
closure for the sample, as the initial and fi nal 
steps (~10% of the total gas released) of several 
samples yield signifi cantly older ages.

TABLE 2. MONAZITE Th-Pb ISOTOPE DATA.

Garnet Grain 208Pb*/232Th ± 1 s.e. 208Pb/204Pb 208Pb*
(%)

208Pb*/232Th age‡

(Ma ± 1 s.e.)

Sample AR4/29/00-3
1 1 1.09E-02† 1.37E-04 3877 99.03 219.0 ± 2.7
1 2 1.16E-02† 1.68E-04 1838 97.96 233.8 ± 3.3
1 3 1.07E-02† 1.17E-04 7776 99.52 215.6 ± 2.3
3 1 1.01E-02† 1.13E-04 5708 99.34 203.3 ± 2.3
3 2 1.06E-02† 1.12E-04 6191 99.39 213.6 ± 2.2
3 3 1.13E-02† 1.12E-04 3249 98.85 227.0 ± 2.2
4 1 1.02E-02† 1.08E-04 3995 99.06 205.4 ± 2.1
4 2 1.12E-02† 1.31E-04 4649 99.19 224.0 ± 2.6
4 3 1.16E-02† 1.19E-03 11,320 99.67  233.8 ± 23.8
5 1 9.53E-03† 1.81E-04 8259 99.55 191.7 ± 3.6
matrix 1.02E-02† 9.30E-05 8342 99.55 205.0 ± 1.9
matrix 1.09E-02† 2.33E-04 5497 99.32 220.0 ± 4.7
matrix 1.05E-02† 1.18E-04 1920 98.05 211.4 ± 2.3

Sample AY8/29/99-2
Inclusion 1 4.47E-04§ 1.11E-05 130.8 70.57   9.0 ± 0.2
Inclusion 2 5.03E-04§ 1.81E-05 151.1 74.53  10.2 ± 0.4
Inclusion 1 4.64E-04§ 1.48E-05 119.8 67.85  9.4 ± 0.3
Inclusion 1 4.67E-04§ 1.36E-05 127.6 69.83  9.4 ± 0.3
Inclusion 1 4.63E-04§ 6.18E-06 187.7 79.49  9.4 ± 0.1
Inclusion 1 4.64E-04§ 8.12E-06 172.9 77.73  9.4 ± 0.2
Matrix 1 4.43E-04§ 1.38E-05 127.5 69.80  9.0 ± 0.3
Matrix 1 4.39E-04§ 6.04E-06 200.0 80.75  8.9 ± 0.1
Matrix 2 2.87E-04§ 1.08E-05 114.7 66.43  5.8 ± 0.2
Matrix 1 1.78E-04§ 8.06E-06  98.0 60.71  3.6 ± 0.2

Sample AR5/30/00-2
2 1 6.21E-03# 1.24E-04 3433 98.93 125.1 ± 2.5
2 2 6.24E-03# 1.45E-04 911.5 95.97 125.7 ± 3.0
3 1 6.10E-03# 5.43E-05 5767 99.35 122.8 ± 1.1
3 2 5.90E-03# 5.60E-05 4196 99.10 118.8 ± 1.1
7 1 7.02E-03# 1.12E-04 4990 99.26 141.3 ± 2.2
9 1 5.56E-03# 5.59E-05 2808 98.66 112.1 ± 1.1
9 2 5.74E-03# 5.52E-05 5059 99.25 115.6 ± 1.1
9 3 5.89E-03# 5.75E-05 2263 98.33 118.6 ± 1.2
11 1 5.64E-03# 6.88E-05 4691 99.20 113.6 ± 1.4
Matrix 1 5.73E-03# 1.05E-04 2955 98.76 115.5 ± 2.1
Matrix 3 5.61E-03# 1.05E-04 3716 99.01 113.2 ± 2.1
Matrix 4 6.22E-03# 1.10E-04 2179 98.32 125.3 ± 2.2
Matrix 5 5.43E-03# 4.79E-05 2506 98.50 109.5 ± 1.0
Matrix 6 6.08E-03# 8.20E-05 3599 98.95 122.5 ± 1.6
Matrix 7 5.48E-03# 4.94E-05 2316 98.37 110.5 ± 1.0
Matrix 10 6.27E-03# 8.62E-05 3423 98.90 126.4 ± 1.7

Note: s.e.—standard error.
*Radiogenic Pb corrected for common Pb.
†Calculated by assuming 208Pb/204Pb = 37.5.
‡Ages determined from calibration based on monazite standard 554.
§Calculated by assuming 208Pb/204Pb = 38.5.
#Calculated by assuming 208Pb/204Pb = 37.67.
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Figure 14. Mica 40Ar/39Ar age spectra from schists and granites from hanging-wall unit 
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sch1
. Errors are ±1σ.

0 20 40 60 80 100
0

2

4

6

8

10

Total Gas Age = 2.14 ± 0.10 Ma
Weighted Mean = 2.00 ± 0.02 Ma

AY9/1/99-1 Muscovite

0

2

4

6

8

10

Total Gas Age = 2.73 ± 0.24 Ma
Weighted Mean = 2.60 ± 0.09 Ma

AY8/31/99-1a Muscovite

0 20 40 60 80 100
0

2

4

6

8

10

Total Gas Age = 1.98 ± 0.11 Ma
Weighted Mean = 1.90 ± 0.02 Ma

AY8/29/99-2 Muscovite

A
p

p
a

re
n

t 
A

g
e

 (
M

a
)

Cumulative % 39Ar Released

A
p

p
a

re
n

t 
A

g
e

 (
M

a
)

A
p

p
a

re
n

t 
A

g
e

 (
M

a
)

Cumulative % 39Ar Released Cumulative % 39Ar Released

0 20 40 60 80 100

0 20 40 60 80 100
0

2

4

6

8

10

Total Gas Age = 4.65 ± 0.21 Ma
Weighted Mean = 3.14 ± 0.73 Ma

AY9/2/99-1 Muscovite

A
p

p
a

re
n

t 
A

g
e

 (
M

a
)

Cumulative % 39Ar Released

0 20 40 60 80 100
8

10

12

14

16

18

20

Total Gas Age = 12.6 ± 0.1 Ma
Weighted Mean = 10.1 ± 0.7 Ma

AY9/3/99-3 Biotite

A
p

p
a

re
n

t 
A

g
e

 (
M

a
)

Cumulative % 39Ar Released

A C

D E

B

Figure 15. Mica 40Ar/39Ar age spectra from 
gneisses and granites from footwall unit 
Pz

gn1
. Errors are ±1σ.



TECTONIC EVOLUTION OF THE NORTHEASTERN PAMIR

 Geological Society of America Bulletin, July/August 2004 967

Sample AY9/1/99-1 and AY8/29/99-2 are 
from the western fl ank of the Kongur Shan 
massif immediately below the fault surface 
and yield weighted mean muscovite ages of 
2.00 ± 0.02 Ma and 1.90 ± 0.02 Ma, respec-
tively (Figs. 5A, 15A, and 15B). Footwall 
ages increase to the east, from 2.60 ± 0.09 Ma 
~6 km east of the fault (Figs. 5A and 15C), 
to 3.14 ± 0.73 Ma ~9 km east of the fault 

(Figs. 5A and 15D), to a biotite age of 10.11 
± 0.70 Ma 13 km east of the fault (Figs. 5A 
and 15E). These results are similar to those 
obtained by Arnaud et al. (1993).

Several K-feldspar separates were analyzed 
from samples of gneisses and deformed gran-
ites of the Kongur Shan massif. However, 
40Ar/39Ar age spectra from these samples 
indicated signifi cant amounts of excess 40Ar, 

and no attempt to model the analyses was 
made. Additionally, K-feldspar age spectra 
used in multidiffusion domain (MDD) mod-
eling by Arnaud et al. (1993) appear to be 
similarly affected by excess 40Ar, suggesting 
that their modeling results (which indicated 
an increase in cooling rates at ca. 2 Ma) may 
not accurately represent the cooling history of 
the footwall.

0 20 40 60 80 100
50

60

70

80

90

100

110

TOTAL GAS AGE: 99.6 ± 1.0 Ma

WEIGHTED MEAN AGE: 98.3 ± 1.0 Ma

AR5/30/00-2 Muscovite

0 20 40 60 80 100
50

60

70

80

90

100

110

TOTAL GAS AGE: 89.2 ± 1.0 Ma

WEIGHTED MEAN AGE: 88.9 ± 1.4 Ma

30

40

50

60

70

80

90

100

110

120

130

TOTAL GAS AGE: 104.6 ± 1.0 Ma
WEIGHTED MEAN AGE: 98.0 ± 0.9 Ma

AR5/13/00-2 Muscovite

0 20 40 60 80 100 0 20 40 60 80 100

50

60

70

80

90

100

110

TOTAL GAS AGE: 79.2 ± 1.0 Ma

WEIGHTED MEAN AGE: 78.8 ± 3.0 Ma

AR5/16/00-1 Muscovite

0 20 40 60 80 100
50

60

70

80

90

100

110

120

130

140

150

TOTAL GAS AGE: 105.2 ± 1.2 Ma

WEIGHTED MEAN AGE: 100.6 ± 3.0 Ma

AR5/16/00-6a Biotite

AR6/1/00-6a Muscovite

0 20 40 60 80 100

50

60

70

80

90

100

110

TOTAL GAS AGE:  80.0 ± 0.8 Ma

WEIGHTED MEAN AGE: 82.0 ± 0.8 Ma

AR6/2/00-3 Muscovite

0 20 40 60 80 100

50

60

70

80

90

100

110

TOTAL GAS AGE: 89.0 ± 0.9 Ma

WEIGHTED MEAN AGE: 88.6 ± 0.9 Ma

AR6/4/00-3 Muscovite

0 20 40 60 80 100
50

60

70

80

90

100

110

A
p

p
a

re
n

t 
A

g
e

 (
M

a
)

Cumulative % 39Ar Released

A
p

p
a

re
n

t 
A

g
e

 (
M

a
)

Cumulative % 39Ar Released

A
p
p
a
re

n
t 
A

g
e
 (

M
a
)

Cumulative % 39Ar Released

A
p
p
a
re

n
t 
A

g
e
 (

M
a
)

Cumulative % 39Ar Released

A
p

p
a

re
n

t 
A

g
e

 (
M

a
)

Cumulative % 39Ar Released

A
p

p
a

re
n

t 
A

g
e

 (
M

a
)

Cumulative % 39Ar Released

A
p

p
a

re
n

t 
A

g
e

 (
M

a
)

Cumulative % 39Ar Released

A
p

p
a

re
n

t 
A

g
e

 (
M

a
)

Cumulative % 39Ar Released

TOTAL GAS AGE: 73.2 ± 1.4 Ma

WEIGHTED MEAN AGE: 74.3 ± 2.9 Ma

z Muscovite

A B C

D

G

E F

H

Figure 16. Mica 40Ar/39Ar age spectra from 
schists and granites from footwall unit 
Pz

sch2
. Errors are ±1σ.

 

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

A
p
p
a
re

n
t 
A

g
e
 (

M
a
)

Cumulative % 39Ar Released

K-feldspar age spectra
Cl-corrected age spectra
MDD Model Fit

A Sample AR6/1/00-6a

100

150

200

250

300

350

400

T
e
m

p
e
ra

tu
re

 (
°C

)

Time (Ma)

90% confidence (median)

90% confidence (distribution)

5 10 15 20 25 30

B Figure 17. (A) Results from step-heating K-
feldspar from footwall sample AR6/1/00-6a. 
Errors are ±1σ. Diagram shows age spectra 
(dark gray), Cl-corrected age spectra (light 
gray), and modeled fi ts (black) from multi-
diffusion domain thermal modeling of the 
analysis. (B) Multidiffusion domain thermal 
model history for the K-feldspar analysis. 
Results indicate slow cooling to isothermal 
conditions throughout most of the Tertiary, 
with rapid cooling initiating at ca. 7–8 Ma.



ROBINSON et al.

968 Geological Society of America Bulletin, July/August 2004

Northern Footwall

Along the Muji fault and Qimugang Creek 
portion of the Kongur Shan normal fault, micas 
from eight samples were analyzed from Pz

sch2
 

(Fig. 5A). Analyses are restricted to unit Pz
sch2

, 
as the metagraywacke from unit Pz

gw2
 in this 

region lacks mineral assemblages suitable for 
40Ar/39Ar analyses. Total gas and weighted mean 
ages are given on the 40Ar/39Ar age spectrum 
plots (Fig. 16; Table DR1). Although they com-
monly agree within error, the weighted mean age 
is interpreted as a more accurate indicator of the 
timing of bulk closure of the sample in analyses 
where it appears that an anomalous step (or 
steps) is signifi cantly affecting the total gas age.

Along the eastern portion of the Muji fault 
segment (Fig. 5A), muscovite from samples 
AR5/13/00-2 and AR5/16/00-1 yielded total 
gas ages of 104.6 ± 1.0 Ma and 79.2 ± 1.0 Ma, 
respectively (Figs. 16A and 16B). A biotite 
analysis from sample AR5/16/00-6a yields a rel-
atively fl at age spectrum, with one anomalously 
old step at higher temperatures (Fig. 16C), and 
has a weighted mean age of 100.6 ± 3.0 Ma. 
Muscovite samples from the Qimugang creek 
portion of the Kongur Shan normal fault 
(Fig. 5A) yield a similar spread in ages from 
74.3 ± 2.9 Ma (AR6/4/02-5b, Fig. 15F) to 98.3 
± 1.0 Ma (AR5/30/02-2, Fig. 16D), with most 
ages falling between 80 and 90 Ma. 40Ar/39Ar 
age spectra of most samples from Pz

sch2
 show 

a signifi cant increase in age (ca. 20–40 Ma) 
over the fi rst several steps (usually ~20% of 
the gas), with a saddle-shaped release spectra 
in the higher-temperature steps in several of the 
analyses. As with the hanging-wall analyses, the 
40Ar/39Ar age spectrum is interpreted to indicate 
diffusional loss of Ar from samples with a pre-
served age gradient, indicating unit Pz

sch2
 was 

cooled slowly through the muscovite closure 
temperature. The saddle-shaped portion of the 
release spectrum is interpreted to refl ect the 
micas structurally breaking down during step 
heating at the higher-temperature steps.

K-feldspar was analyzed from a granitic dike 
(sample AR6/1/00-6a, Fig. 5A) within Pz

sch2
. Iso-

thermal duplicates were run from temperatures of 
400 to 800 °C in order to correct the age spectra 
for Cl-derived excess 40Ar (Harrison et al., 1994). 
The Cl-corrected 40Ar/39Ar age spectra from the 
K-feldspar shows a relatively fl at portion over 
the fi rst 20%–25% of the gas with an age of 
4–8 Ma (Fig. 17A; Table DR1), then increasing 
smoothly, peaking at ca. 35 Ma. Results from 
MDD modeling of the analysis (Lovera et al., 
1997; Lovera et al., 2002) indicate slow cool-
ing (or isothermal conditions) between 35 Ma 
and ca. 8 Ma, followed by rapid cooling from 
~270 °C beginning at 7–8 Ma (Fig. 17B). These 

results support the inference from the muscovite 
analyses that the upper unit cooled slowly though 
the muscovite closure temperature.

DISCUSSION

Triassic

Petrologic studies of hanging-wall unit Pz
sch1

 
of the Kongur Shan extensional system indicate 
it is part of a medium- to high-temperature, low-
pressure Buchan metamorphic sequence. Th-Pb 
ages from monazite inclusions in garnet date 
this metamorphic event as Late Triassic to Early 
Jurassic (230–200 Ma), overlapping with U-Pb 
zircon ages from two large granites analyzed in 
this study, as well as U-Pb zircon ages of gran-
ites from previous studies in the region (Pan, 
1992, 1996; Arnaud et al., 1993; Cowgill et al., 

2003). The synchronous development of the 
Buchan metamorphic sequence and intrusion of 
granitic bodies suggests a Triassic–Early Juras-
sic arc setting for the hanging-wall lithologies 
(Fig. 18A). These results support the interpreta-
tion that the northern hanging wall of the Kon-
gur Shan extensional system is an along-strike 
equivalent of the South Kunlun terrane, which 
developed during Permian to Early Jurassic 
north-directed subduction of the Paleo-Tethys 
ocean (Pan, 1992, 1996; Youngun and Hsu, 
1994; Matte et al., 1996; Şengör and Natal’in, 
1996; Xiao et al., 2002a, 2002b).

Hanging-wall schists from unit Pz
sch1

 also 
experienced pervasive right-slip ductile shear. 
Although Pan (1992) attributed right-slip shear 
within the hanging wall to Cenozoic motion on 
the right-slip Karakoram fault to the south, our 
results indicate that the hanging-wall  deformation 
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Figure 18. Mesozoic tectonic history of the Pamir–western syntaxis region. Open triangles 
indicate older Paleozoic suture zones. (A) Triassic northward subduction of the Paleo-
Tethys ocean results in the development of an arc terrane along the southern margin of the 
Asian continent, with emplacement of granitic plutons and the development of a Buchan 
metamorphic terrane. Right-slip shear within the metasedimentary rocks is interpreted to 
be due to oblique subduction, as proposed by Mattern et al. (1996). (B) Jurassic mica ages 
in the hanging wall record slow cooling, synchronous with (but not necessarily related to) 
normal faulting and sedimentation in the Tarim basin (Sobel, 1999). (C) Middle Cretaceous 
crustal thickening and shortening occur along the northern margin of the Pamir, synchro-
nous with metamorphic and igneous activity within the Karakoram terrane. These events 
are interpreted to be a result of the middle Cretaceous collision of the Lhasa block with the 
southern margin of Asia (Matte et al., 1996), and subsequent underthrusting of the Lhasa 
terrane beneath the Qiangtang terrane (e.g., Kapp et al., 2003).
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is synchronous with metamorphic and igneous 
activity and is therefore Triassic in age. Right-
slip ductile shear synchronous with Triassic 
pluton emplacement has previously been identi-
fi ed to the east along the South Kunlun suture by 
Mattern and Schneider (2000), who interpreted 
the shear to have developed within the active 
arc from oblique subduction of the Paleo-Tethys 
ocean. Our results provide further evidence in 
support of this hypothesis (Fig. 18A).

Jurassic

40Ar/39Ar analyses of muscovite and biotite 
from schists and granites within hanging-wall 
unit Pz

sch1
 yield Middle to Late Jurassic cooling 

ages, with all but one of the ages falling between 
160 and 170 Ma. Previous studies have found 
signifi cant late Middle to Late Jurassic tectonic 
activity to the northeast in the Tarim basin, with 
detrital apatite fi ssion track ages recording denu-
dation and erosion synchronous with deposition 
of thick sedimentary sequences between ca. 165 
and 145 Ma (Sobel and Dumitru, 1997; Sobel, 
1999) (Fig. 18B). Similar signatures from stud-
ies around the Tarim basin and Qaidam basin 

also indicate widespread cooling and denuda-
tion during the Jurassic (Hendrix et al., 1992; 
Cowgill et al., 2001; Sobel et al., 2001; Yin et 
al., 2002). However, age spectra from the analy-
ses indicating possible slow cooling suggest that 
the cooling ages are not the result of tectonic-
related denudation. Although the Jurassic ages 
may have been related to motion on the Baoziya 
thrust, a likely alternative is that the Jurassic 
cooling was induced by thermal reequilibration 
of the crust after peak metamorphism associated 
with magmatism.

Cretaceous

Th-Pb monazite geochronology, thermo-
barometry, and 40Ar/39Ar thermochronology 
results from the hanging wall of the Shala Tala 
thrust indicate signifi cant crustal thickening and 
shortening during the middle Cretaceous in the 
northeastern Pamir. Th-Pb ages of monazite 
inclusions in garnet and thermobarometric 
analyses show that footwall unit Pz

sch2
 was 

buried to mid-crustal conditions of ~25 km and 
~650 °C between 110 and 130 Ma (Fig. 18A). 
The lack of older preserved ages (i.e., Triassic) 

from  monazite inclusions within garnet indicate 
that unit Pz

sch2
 is not an exhumed deeper portion 

of the hanging-wall metamorphic terrane. Plot-
ting peak metamorphic temperatures, muscovite 
cooling ages, and K-feldspar MDD modeling 
results together shows rapid cooling of unit Pz

sch2
 

immediately after peak metamorphic conditions 
from ~650 °C to ~350 °C (near the muscovite 
closure temperature), followed by slow cool-
ing to near isothermal conditions (Fig. 19A). 
This period of rapid cooling (ca. 110–100 Ma) 
is interpreted to date the timing of north-north-
east–directed motion along the Shala Tala thrust, 
and emplacement of the high-grade Pz

sch2
 over 

the low-grade metagraywacke of Pz
gw2

.
There is an increasing body of evidence for 

signifi cant middle to Late Cretaceous tectonic 
activity along the western portion of the Indo-
Asian collision zone. To the south, geochrono-
logic investigations along the western Karakoram 
Mountains (Searle et al., 1990, 1998), southern 
Karakoram Mountains (Fraser et al., 2001), and 
eastern Hindu Kush Mountains (Hildebrande et 
al., 2001) have documented middle to Late Creta-
ceous metamorphic zircon and monazite ages, as 
well as numerous Cretaceous (115–80 Ma) plu-
tonic bodies throughout the Karakoram terrane 
(Debon et al., 1987; Crawford and Searle, 1992; 
Hildebrande et al., 2001). Middle Cretaceous con-
glomerates within the Karakoram terrane uncon-
formably overlie deformed Permian to Jurassic 
deposits (Gaetani et al., 1990, 1993; Gaetani, 
1997). To the northeast, thick Cretaceous depos-
its are found along the margins of the Tarim basin 
(Hendrix et al., 1992; Sobel, 1999), with apatite 
fi ssion track data from the northern Tarim basin 
indicating signifi cant unroofi ng at 100 ± 20 Ma 
(Dumitru et al., 2001). These studies, together 
with our own data, indicate widespread middle 
Cretaceous crustal thickening and shortening 
throughout the entire Pamir–western Himalayan 
syntaxis region and western Tian Shan Moun-
tains. This tectonic activity is interpreted to be 
related to the Cretaceous closure of the western 
portion of the Bangong-Nujiang suture between 
the Lhasa and Qiangtang terranes (Matte et al., 
1996), and possible continued underthrusting of 
the Lhasa terrane beneath the Karakoram (Kapp 
et al., 2003) (Fig. 18C). It is interesting to note 
that these contractional events temporally overlap 
with extensional events in the eastern Altyn Tagh 
region and eastern China (Ratschbacher et al., 
2000; Chen et al., 2003), indicating a complex 
distribution of coeval extension and contraction 
in Asia during the Cretaceous.

Cenozoic

Th-Pb ages of ca. 9.3 Ma from monazite 
inclusions in garnet provide a maximum age 
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constraint for the timing of peak metamorphic 
conditions of the Kongur Shan gneisses (Pz

gn
) 

of ~8 kbar and 650–700 °C. These results indi-
cate signifi cant Late Miocene crustal thickening 
along the northeastern margin of the Pamir, 
interpreted to be related to convergence and 
thickening along the Main Pamir Thrust. These 
results also give constraints on the magnitude 
of extension, indicating ~34 km of east-west 
extension (assuming a constant fault dip of 40° 
as observed along the Kongur Shan massif).

MDD thermal modeling of a K-feldspar 
analysis from the northern footwall of the Kon-
gur Shan normal fault shows a period of rapid 
cooling initiating at ca. 7–8 Ma, after a period 
of nearly isothermal conditions since at least the 
Oligocene (Fig. 17). This rapid cooling event is 
interpreted to date the initiation of denudation 
of the footwall along the Kongur Shan normal 
fault, indicating normal faulting initiated imme-
diately after crustal thickening in the region. 
Additionally, extrapolation of the MDD model-
ing results to the present suggest cooling rates 
for the footwall have been relatively constant 
since the initiation of extension (Fig. 19B). 
While a biotite age of 10.1 ± 0.7 Ma ~13 km 
east of the Kongur Shan fault would suggest 
that exhumation along the fault initiated slightly 
earlier along the Kongur Shan massif, the age 
spectrum is very irregular (Fig. 15E) and is 
interpreted to be contaminated with excess 40Ar.

Magnitudes of extension along the Qimugang 
creek portion of the Kongur Shan normal fault 
are not well constrained. However, assuming 
a preextensional depth of 10 km (assuming a 
geotherm of 25 °C/km and a preextensional 
temperature of 250 °C from the K-feldspar 
analysis) and a fault dip of 30° for the portion 
of the fault where the K-feldspar analysis is 
from indicates ~17 km of east-west extension. 
This magnitude of east-west extension along the 
northern portion of the footwall is smaller than 
that calculated along the Kongur Shan massif. 
However, the northward decrease in the mag-
nitude of east-west extension may have been 
accommodated by the Kalagile normal fault. 
Partitioning of extension between the Kongur 
Shan and Kalagile normal faults may also 
explain the smaller magnitude of exhumation 
for the Qimugang area (~10 km) than for the 
Kongur Shan massif (~29 km) without requir-
ing signifi cant changes in fault geometry and the 
magnitude of total extension along fault strike.

The relative chronology of the different fault 
strands north of the Kongur Shan massif (the 
Kalagile fault, Qiaklak fault, and Kongur Shan 
fault) is still unclear. If the Qimugang Creek 
portion of the fault initiated after east-west 
extension began in the Kongur Shan massif 
(Figs. 20A–C), the 7–8 Ma rapid cooling from 

the K-feldspar analysis is a minimum age for 
the initiation of east-west extension. Related to 
this uncertainty is the development of the Qiak-
lak normal fault (Fig. 5A). If the Kalagile fault 
represents the original trace of the Kongur Shan 
fault, it suggests that the Qiaklak fault is the 
most recent strand of the fault to develop, and 
the master fault is in the process of propagat-
ing westward, excising a portion of the hanging 
wall (Figs. 20A–C). Alternatively, the Qiaklak 
fault may be the original trace of the main 
Kongur Shan normal fault, which has jumped 
eastward, incising a portion of the footwall 
(Figs. 20D–F).

Timing of motion along the right-slip Ghez 
fault (Fig. 5A) is the least-constrained aspect of 

the Cenozoic evolution of the northern Kongur 
Shan extensional system. Although the Ghez 
fault shows no signs of recent activity, three 
features indicate that motion along the right-slip 
fault was active during motion along the Kongur 
Shan normal fault: (1) The Ghez fault truncates 
units of the Kongur Shan massif; (2) stretching 
lineations within the mylonitic gneisses of Pz

gn
 

adjacent to the Ghez fault are rotated clockwise; 
and (3) different metamorphic grades are juxta-
posed across the Ghez fault. However, whether 
right-slip motion along the fault initiated before, 
during, or after initiation of extension is unclear. 
In any case, development of the Ghez fault may 
have developed in response to northward trans-
lation of the Pamir arc.
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Figure 20. Kinematic models for the development of the northern part of the Kongur Shan 
extensional system. Model 1: Extension initiates along the Kongur Shan massif but does not 
extend farther northwest to the Muji fault (A). Extension then propagates northward, along 
the Qimugang Creek and Muji portions of the fault system (B). Recent excisement of the 
hanging wall results in development of the Qiaklak fault (C). Model 2: Extension initiates 
along the Muji, Qimugang creek, and Qiaklak portions of the Kongur Shan extensional 
system (D). Slip along the Kalagile fault initiates, allowing differential uplift and extension 
along the footwall (E). Continued evolution of the fault system results in incisement of the 
footwall, with only minor slip currently being accommodated along the Qiaklak fault (F).
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East-West Extension in the Pamir

As discussed in the introduction, models for 
extension in the Pamir fall into three categories 
of predictions for the spatial and temporal pat-
terns of extension along the Kongur Shan exten-
sional system: (1) extension initiating along the 
central portion of the fault system, propagating 
to the north and south (synorogenic extension, 
e.g., Brunel et al., 1994) (Fig. 3A), (2) extension 
initiating in the north, propagating southward 
(radial thrusting of Strecker et al., 1995, or oro-
clinal bending of Yin et al., 2001) (Figs. 3B and 
3C), and (3) extension initiating in the south, 
propagating northward (propagation of Kara-
koram fault; Ratschbacher et al., 1994; Murphy 
et al., 2000) (Fig. 3D).

While we are unable to directly evaluate 
variations in the magnitude of extension along 
the central and southern portions of the Kongur 
Shan extensional system at this time, the large 
local topographic relief of the footwall (~4 km) 
along the Kongur Shan normal fault suggest a 
similar magnitude of extension to that deter-
mined along the Kongur Shan massif as far 
south as the Muztaghata massif. However, slip 

along the southern Tashkorgan fault appears 
to diminish signifi cantly southward (Figs. 4E 
and 4F), and Eocene K-feldspar cooling ages 
along the northern portion of the Tashkorgan 
fault footwall (Pan, 1996) indicate minimal 
late Cenozoic exhumation. These observations 
indicate that the Tashkorgan fault could not 
have accommodated the ~34 km of Late Mio-
cene to Recent east-west extension determined 
for the gneisses of the Kongur Shan massif. 
Therefore, the predicted pattern of extension 
for models involving northward propagation of 
the right-slip Karakoram (maximum extension 
in the south) is not supported. This observa-
tion suggests that east-west extension in the 
Pamir began independently of (and prior to?) 
the northward propagation of the Karakoram 
fault into the region, and that extension in the 
Pamir is not directly related to the tectonics 
of southwestern Tibet (cf. Ratschbacher et al., 
1994; Murphy et al., 2000). Furthermore, if the 
right-slip Karakoram fault has propagated into 
the Pamir relatively recently (i.e., Pliocene), it 
would suggest that other structures in the Pamir, 
such as the thrust systems in the Rushan Pshart 
zone, may also have evolved without being 

kinematically linked to structures of southwest-
ern Tibet by the Karakoram fault (Fig. 21).

Crustal thickening immediately prior to 
east-west extension along the Kongur Shan 
extensional system, and the apparent decrease 
in magnitude of east-west extension to the 
north, provide evidence to support the synoro-
genic extension model of Brunel et al. (1994), 
in which extension develops as a result of 
vertical wedge extrusion to accommodate fur-
ther crustal thickening along the Main Pamir 
Thrust. However, our observations also leave 
open the possibility that the total magnitude of 
east-west extension may be highest along the 
northern margin of the Pamir. This is due to the 
uncertainties of the northward termination of 
the Kalagile normal fault, uncertainties in the 
subsurface geometries of the different faults, 
and the possibility that extensional strain is par-
titioned to the north between the Muji fault and 
the Karakul rift. Therefore, it is not currently 
possible to rule out models for east-west exten-
sion involving radial spreading along the Main 
Pamir Thrust (Strecker et al., 1995) or oroclinal 
bending of the Pamir (Yin et al., 2001). Better 
constraints on the slip histories of the central 
and southern segments of the Kongur Shan 
extensional system, and the Karakul rift to the 
west, are needed in order to evaluate the appli-
cability of these models.

CONCLUSIONS

Field mapping in conjunction with thermo-
chronology, thermobarometry, and geochronol-
ogy reveal a complex and protracted tectonic 
history along the northeastern margin of the 
Pamir from the Triassic to the present. Hang-
ing-wall schists record development of a Late 
Triassic to Early Jurassic Buchan metamorphic 
sequence synchronous with the intrusion of 
granitic plutons and right-slip ductile shear. This 
event is interpreted to be related to northward 
subduction of the Paleo-Tethys ocean beneath 
the southern margin of Asia, and the develop-
ment of early Mesozoic arc magmatism and 
related metamorphism. Pervasive right-slip duc-
tile shear fabrics within the hanging wall support 
the conclusion by Mattern et al. (1996) that sub-
duction of the Paleo-Tethys ocean was oblique, 
resulting in dextral shear within the arc system. 
The signifi cance of Late Jurassic mica cooling 
ages from the hanging wall, while overlapping 
with regional tectonic events, is unclear but may 
be related to motion along the Baoziya thrust.

Amphibolite-facies schists along the north-
ern portion of the footwall record middle 
Cretaceous crustal thickening at 130–110 Ma. 
This metamorphic event was followed by 
rapid exhumation caused by motion along the 
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 northeast-directed Shala Tala thrust, placing the 
high-grade schists over lower-grade metagray-
wacke prior to ca. 100 Ma. This event overlaps 
with numerous events recorded within the Kara-
koram terrane and the Tarim basin, suggesting 
the entire western portion of the Indo-Asian col-
lision zone was affected by middle Cretaceous 
shortening and crustal thickening.

Late Miocene ages from monazite inclusions 
in garnet from gneisses of the Kongur Shan 
massif document crustal thickening along the 
northeastern margin of the Pamir at ca. 9 Ma. 
Crustal thickening was immediately followed 
by extension, initiating at 7–8 Ma. Vertical 
exhumation along the northern Kongur Shan 
extensional system varies from ~10–11 km 
along the Qimugang creek portion of the fault 
to ~29 km along the Kongur Shan massif, with 
a minimum of ~34 km of east-west extension 
across the Kongur Shan fault.

Field observations and interpretation of satel-
lite images suggest the magnitude of east-west 
extension decreases signifi cantly to the south 
along the Tashkorgan fault segment of the 
Kongur Shan extensional system. This indi-
cates that recent east-west extension along the 
Kongur Shan system is not related to northward 
propagation of the right-slip Karakoram fault as 
has been previously proposed. Rather, extension 
is most likely driven by synorogenic extension, 
radial thrusting along the Main Pamir thrust, or 
oroclinal bending of the entire Pamir arc.
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