Eruption and magma crystallization ages of Las Tres Vírgenes (Baja California) constrained by combined 230Th/238U and (U−Th)/He dating of zircon

Axel K. Schmitt a,⁎, Daniel F. Stocklib, Brian P. Hausbackc

a Department of Earth and Space Sciences, UCLA, Los Angeles CA 90095-1567, USA
b Department of Geology, University of Kansas, Lawrence, KS 66045-7613, USA
c Geology Department, California State University, Sacramento CA 95819-6043, USA

Received 20 December 2005; received in revised form 23 June 2006; accepted 3 July 2006
Available online 20 September 2006

Abstract

Las Tres Vírgenes volcano is a cale-alkaline composite cone located near the main Gulf of California escarpment on the E coast of the Baja California peninsula. High-sensitivity ion microprobe U-series (230Th/238U) ages for zircon from La Virgen tephra average 121 ± 10 ka (1σ; MSWD=2.7), with discrete age peaks at ∼100 and 160 ka. The noble gas mass spectrometric (U−Th)/He zircon age, corrected for disequilibrium and pre-eruptive storage, is 36±3 ka. This result for the eruption age of La Virgen tephra is significantly older than previously postulated historic or Holocene ages that were based on an 18th century map reference and 14C dating of accidental charcoal, respectively. The new (U−Th)/He zircon age is consistent with a 14N26±4 ka age derived from cosmogenic He exposure dating of an overlying basaltic lava flow [Hausback, B.P. and Abrams, M.J., 1996. Plinian eruption of La Virgen Tephra, Volcán Las Tres Virgenes, Baja California Sur, Mexico. Eos, Transactions, American Geophysical Union, 77(46, Suppl.): 813–814.]. U−Pb zircon analysis of ignimbrites erupted from the adjacent Early Pleistocene La Reforma and El Aguajito calderas yielded ages of 1.38 ± 0.03 Ma (n=12; MSWD=1.0) and 1.17 ± 0.07 Ma (n=23; MSWD=1.3), respectively. No evidence for these ages is found among La Virgen zircons, whereas pre-Quaternary zircon xenocrysts are common. The La Virgen magma, therefore, evolved unrelated to Early Pleistocene magmatism in adjacent calderas, but assimilated local basement rocks. A gap between average Th−U and (U−Th)/He zircon ages suggests that zircon crystallization was discontinuous in the La Virgen magma chamber. In addition, partial resorption of zircon suggests episodic thermal rejuvenation, most likely by basaltic recharge. Based on the zircon record, the >100 ka lifetime of the thermal anomaly that sustained repeated intrusive pulses significantly exceeds the age of the last eruption. This strengthens the view that Tres Vírgenes has a potential for future eruptions.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Gulf of California; volcanism; He-4; U-238/Th-230; zircon; magma chambers

1. Introduction

Volcán Las Tres Vírgenes is the youngest edifice of the Tres Vírgenes volcanic complex, a group of cale-alkaline composite cones located near the Gulf of California coast of the Baja California peninsula (Fig. 1). Active fumaroles and hot springs present in the area are

⁎ Corresponding author. Tel.: +1 310 206 5760.
E-mail address: axel@argon.ess.ucla.edu (A.K. Schmitt).
the surface manifestations of a subsurface hydrothermal system currently exploited for electric power generation (Portugal et al., 2000; Quijano-León and Gutiérrez-Negrín, 2003). Based on the 18th century map by the Jesuit missionary Ferdinando Consag (a.k.a. Ferdinand Konščak) containing a reference to an eruption in 1746 (Ives, 1962), hydrothermal activity, and its youthful appearance, Volcán Las Tres Vírgenes is traditionally cited as one of the few historically active volcanoes along the Gulf of California rifted margin (e.g., Russell, 1897; Demant, 1984; Siebert and Simkin, 2002). Hazards from potential future eruptions of Las Tres Vírgenes include Plinian eruption columns, tephra fallout, lahars and landslides that threaten ground and air transport routes, nearby geothermal power plants, and the towns of Santa Rosalía and San Ignacio (Capra et al., 1998).

Radiometric age estimates for Las Tres Vírgenes eruptions range between ~6.5 ka (14C age of charcoal; Capra et al., 1998) and ~26 ka (cosmogenic He exposure age of a basaltic lava flow; Hausback and Abrams, 1996). These ages appear inconsistent with an inferred historic eruption (Ives, 1962), although the historic eruption account is not specific and may refer to the eruption of the latest andesite summit lavas of Las Tres Vírgenes. The nature of the subsurface magmatic system that represents the heat source for the geothermal system remains equally elusive, leaving the question unanswered whether Las Tres Vírgenes is fed by a large, long-lived magma body or small, transient magma batches.

In order to better constrain crystallization and eruption ages, we explored and combined \(^{230}\text{Th}/^{238}\text{U}\) and \((U-\text{Th})/\text{He}\) dating of zircon of La Virgen tephra, the most voluminous pyroclastic deposit that erupted from Las Tres Vírgenes (Hausback and Abrams, 1996). This approach is based on the vastly different diffusive properties of radiogenic parents and daughters in zircon: Th, U (and Pb) are virtually unaffected by crystal
residence at magmatic temperatures (∼800 °C), where-
as fast-diffusing He only accumulates after cooling to
ambient temperatures following the eruption. The use of
nearly non-destructive ion microprobe 230Th/238U ana-
lysis (only ∼0.1% of the mass of a typical zircon is
consumed during the measurement) allows us to use the
same crystals for subsequent noble gas mass spectro-
metric analysis. Our results for La Virgen tephra are
inconsistent with a previously inferred Holocene (Capra
et al., 1998) eruption age and instead demonstrate that
the last violent eruption of Volcán La Virgen occurred at
∼36±3 ka (1σ error) due to thermal rejuvenation of
∼100–160 ka old differentiated intrusions.

2. Geologic background

Volcán Las Tres Virgenes is part of a volcanic cluster
that includes the central vent edifices of El Azufre and El
Viejo (collectively known as Tres Virgenes Volcanic
Complex; Capra et al., 1998), and the adjacent caldera
structures of Aguajito and La Reforma (Demant, 1981;
Demant, 1984; Garduño-Monroy et al., 1993). Off-shore
volcanic ridges extending from Tres Virgenes–Aguajito–La
Reforma towards sea-floor spreading centers in the
Guayamas basin (Fabriol et al., 1999) are potentially
part of the same “leaky transform” system (Batiza,
1979). On-shore, the basement comprises Cretaceous
granodiorite (dated by K–Ar to 91.2 ± 2.1 Ma; Schmidt,
1975) which is overlain by the volcano-sedimentary
successions of the Miocene Comondú group and the
Upper Miocene Santa Lucía andesites (Garduño-Monroy
et al., 1993). During the Late Miocene, alkaline–tholeiitic
compositions superseded earlier calc-alkaline volcanism
following the cessation of Pacific Plate subduction and
initiation of Proto-Gulf of California rifting at around
∼12 Ma (Fig. 1; Hausback, 1984; Saunders et al., 1987;
Sawlan, 1991). Magas erupted from the Las Tres
Virgenes–Aguajito–La Reforma centers, however, are
anomalous because they are calc-alkaline in the absence
of ongoing subduction. Tres Virgenes–Aguajito–La
Reforma is the largest and most recent of several isolated
volcanic centers that retained a calc-alkaline geochemical
signature after subduction ceased. Remelting of subduc-
tion modified mantle sources during rifting has been

![Geologic map of the Tres Virgenes Volcanic Complex (TVCC) and adjacent Aguajito and La Reforma calderas (modified after Garduño-
Monroy et al., 1993; Capra et al., 1998). 1-m-isopach line drawn for La Virgen tephra deposit. Sample localities and the location of the geothermal
area are indicated: “BL” refers to the Highway Basalt locality, previously dated by cosmogenic He exposure methods (Hausback and Abrams, 1996),
all others are samples from this study.](image-url)
proposed as an explanation for the presence of calc-alkaline geochemical signatures in the absence of ongoing subduction (Sawlan, 1991).

Voluminous silicic volcanic activity in the area is thought to have commenced in the Early Pleistocene (1.6–1.4 Ma for intrusive and extrusive rocks at La Reforma; Schmidt, 1975; Garduño-Monroy et al., 1993). This is consistent with the reversed magnetic polarity inferred to outline caldera ring-fault structures, as well as dacitic and rhyolitic ignimbrites erupted from La Reforma and Aguajito that caused the formation of caldera structures.

Sawlan (1991) reported for La Reforma ignimbrite (Sawlan, 1986). In brief, voluminous silicic volcanic activity in the area is thought to have commenced in the Early Pleistocene (1.6–1.4 Ma for intrusive and extrusive rocks at La Reforma; Schmidt, 1975; Garduño-Monroy et al., 1993). This is consistent with the reversed magnetic polarity reported for La Reforma ignimbrite (Sawlan, 1986). Progressively younger eruptions were fed by counterclockwise migrating eruptive vents from SE to NW and NW to SW. Volcanics from Aguajito yielded K–Ar ages between 0.5 and 0.7 Ma (Garduño-Monroy et al., 1993), whereas El Viejo, El Azufre and Las Tres Virgenes lavas range from 0.44 Ma to recent (Portugal et al., 2000). An andesitic lava flow from the NW flank of Las Tres Virgenes also falls into the normal polarity Brunhes epoch (<780 ka; Sawlan, 1986).

Accounts on the geology of La Reforma can be found in Schmidt (1975) and Demant (1981), and a recent remote sensing mapping by Hook et al. (2005), whereas the geology of Aguajito complex has been described by Garduño-Monroy et al. (1993). In brief, voluminous silicic ignimbrites erupted from La Reforma and Aguajito that caused the formation of caldera structures. Both centers also include lava flows and cinder cones of less evolved composition, as well as dacitic–rhyolitic domes inferred to outline caldera ring-fault structures (Garduño-Monroy et al., 1993).

The formation of the ~15 km³ Las Tres Virgenes volcano (Sawlan, 1986; Capra et al., 1998) initiated with an early volcano-building stage of andesitic–dacitic effusive activity, followed by pyroclastic eruptions of dacitic–rhyolitic pumice and juvenile clasts of the Las Virgenes tephra (Hausback and Abrams, 1996). The eruptive sequence terminated with the localized emplacement of south flowing basalt and basaltic–andesitic lava flows (Sawlan, 1986; Hausback and Abrams, 1996).

3. Methods

Pumice clasts from the La Virgen fall deposit were sampled from the lower portion of a ~5-m-thick outcrop (sample BH91B10; Fig. 2). In addition, two whole-rock ignimbrite samples from Aguajito and La Reforma (samples BH00R40 and BH00R41; Fig. 2) were included in this study. Pumice and rock fragments were hand-picked to avoid lithic clasts and other extraneous materials, ultrasonically cleaned, dried and crushed. Zircon grains typically between ~100 and ~200 μm long were separated from the <250 μm sieved fraction using heavy liquids, magnetic separation and hand-picking.

U–Th disequilibrium dating was performed on individual zircons using the UCLA Cameca ims 1270 secondary ion mass spectrometer (SIMS, ion microprobe), modifying a technique from Reid et al. (1997). A ~40–50 nA mass-filtered Obeam was focused into a ~35×30 μm oval spot. Secondary ions were accelerated at 10 keV with an energy bandpass of 50 eV and analyzed at a mass resolution of ~4800 using an axial electron multiplier collector in peak jumping mode. For each session, relative sensitivities for 238UO and 232ThO were calibrated by measuring the radiogenic 206Pb/208Pb ratio of concordant reference zircons AS-3 and 91500 (Paces and Miller, 1993; Wiedenbeck et al., 1995). Raw intensities were corrected for electron multiplied dead-time (25 ns). Background corrections for 236Th were performed using the averaged intensities measured on two mass stations at 244.038 and 246.300 amu (see Appendix). Elevated backgrounds at 244.038 (232ThCl+) occur in the case of partial beam overlap with epoxy and correlate with unusually high intensities at mass 246.028 (230ThO) that result from a quasi-isobaric interference (232ThCl+, see Appendix). In one case, the analysis had to be discarded because of an unusually high 244.038 intensity (~5 cps) resulting from partial overlap with epoxy. Intermittently analyzed Proterozoic zircons AS-3 and 91500 yielded (230-Th)/(238-U) activities (noted by parentheses) that were in equilibrium within uncertainty (see Appendix).

La Virgen zircons found to be in secular equilibrium and zircons from the older Aguajito and La Reforma complexes were analyzed for U–Pb using techniques outlined in Schmitt et al. (2003). U concentrations were calculated from UO+/94ZrO2+ (U–Pb analysis protocol) and UO+/90Zr2O4+ (U–Th analysis protocol) ratios, respectively. The relative sensitivity for U and Zr was determined on 91500 reference zircon (81.2 ppm U; Wiedenbeck et al., 1995). In addition, whole-rock U and Th concentrations and 233Th/230Th for La Virgen tephra were determined by thermal ionization mass spectrometry (TIMS) and SIMS methods (Layne and Sims, 2000), respectively.

He, U and Th abundances in single zircons and zircon aliquots from La Virgen tephra were measured using isotope dilution at the University of Kansas noble gas mass spectrometry lab. Farley et al. (2002) demonstrated the potential of the (U–Th)/He dating method as a powerful tool for dating young volcanic deposits. However, they also pointed out that (U–Th)/He ages computed assuming secular equilibrium in young zircons may lead to a systematic underestimation of the eruption age of young (~1 Ma) volcanic deposits. This age inaccuracy can be attributed to initial 230Th
deficit in zircon, resulting in slower He production than expected at secular equilibrium. 226Ra may also be fractionated from its parent, 230Th, but the effects of 226Ra disequilibrium on zircon (U–Th)/He ages from La Vírgen tephra should be negligible in light of the age of the eruption (>10 ka) (Farley et al., 2002).

Using the measured whole-rock and zircon (232Th)/(230Th) ratios for the La Vírgen tephra, we estimated the initial (230Th)/(238U) activity ratio of magmatic zircons at the time of the eruption (eruption D230 of Farley et al., 2002). In using this approach, we assumed that (1) the measured whole-rock value is representative of the magma from which the zircons crystallized, (2) the magma was in secular equilibrium, and (3) that we can iteratively calculate an accurate magma residence time from the independently constrained disequilibrium age of ~120 ka.

The fact that these analyses include zircons that have been removed from their epoxy mounts after SIMS measurements introduces a minor complication for the α-ejection correction to (U–Th)/He ages, which is based on the dimensions of unmodified crystals (Farley et al., 1996). We used a modified α-ejection correction procedure applying a Monte-Carlo method accounting for internal and external surfaces of the polished zircon grains (Table 1). For unpolished grains we employed a standard α-ejection correction for unmodified zircon crystals assuming a homogenous U and Th distribution (Farley et al., 1996).

4. Results

The whole-rock composition of La Vírgen tephra plots on the equiline within analytical uncertainty (Fig. 3). In contrast, most of the analyzed La Vírgen zircons are not in secular equilibrium (Table 2) and fall below the equiline in Fig. 3. Four unknowns that yielded equilibrium values within 1σ measurement uncertainty were subsequently analyzed for U–Pb. Three of these zircons yielded Pre-Quaternary U–Pb ages that range from ~25 to 250 Ma. For the remaining unknown (g10 spot s1) with a U–Th age of 289±100 ka, a Late Pleistocene U–Pb age of 127±81 ka was determined. This age is consistent with the U–Th result.

Table 1

U–Th results for La Virgen tephra zircons and composite pumice sample (whole-rock). Ages calculated from two-point isochrons through zircon and whole-rock compositions.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Grain</th>
<th>Spot</th>
<th>230Th ± 232Th</th>
<th>±</th>
<th>238U ± 232Th</th>
<th>±</th>
<th>Age (ka) + –</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH91B10 (La Vírgen)</td>
<td>zircon 1</td>
<td>1</td>
<td>4.29 ± 0.13</td>
<td>8.24 ± 0.07</td>
<td>65 ± 37</td>
<td>–27</td>
<td>56 ± 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 1</td>
<td>2a</td>
<td>3.45 ± 0.74</td>
<td>6.13 ± 0.08</td>
<td>69 ± 36</td>
<td>–27</td>
<td>178 ± 88</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 1</td>
<td>3</td>
<td>3.37 ± 0.31</td>
<td>4.25 ± 0.05</td>
<td>141 ± 49</td>
<td>–34</td>
<td>252 ± 180</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 1</td>
<td>6</td>
<td>3.12 ± 0.44</td>
<td>4.68 ± 0.03</td>
<td>91 ± 37</td>
<td>–27</td>
<td>178 ± 115</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 6</td>
<td>2</td>
<td>6.24 ± 1.12</td>
<td>7.36 ± 0.05</td>
<td>189 ± 76</td>
<td>–76</td>
<td>84 ± 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 6</td>
<td>3a</td>
<td>4.38 ± 0.50</td>
<td>6.24 ± 0.08</td>
<td>112 ± 34</td>
<td>–26</td>
<td>227 ± 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 6</td>
<td>4a</td>
<td>3.86 ± 0.27</td>
<td>4.65 ± 0.06</td>
<td>166 ± 48</td>
<td>–33</td>
<td>393 ± 257</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 6</td>
<td>5a</td>
<td>5.02 ± 0.53</td>
<td>5.56 ± 0.07</td>
<td>233 ± 77</td>
<td>–77</td>
<td>273 ± 149</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 7</td>
<td>1</td>
<td>2.63 ± 0.24</td>
<td>3.10 ± 0.01</td>
<td>160 ± 80</td>
<td>–46</td>
<td>227 ± 223</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 8</td>
<td>1</td>
<td>4.89 ± 0.25</td>
<td>4.47 ± 0.04</td>
<td></td>
<td></td>
<td>494 ± 336</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 10</td>
<td>1</td>
<td>5.83 ± 0.54</td>
<td>6.21 ± 0.09</td>
<td>289 ± 100</td>
<td>–183</td>
<td>90 ± 582</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 10</td>
<td>2</td>
<td>2.98 ± 0.11</td>
<td>3.57 ± 0.03</td>
<td>160 ± 25</td>
<td>–20</td>
<td>683 ± 210</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 10</td>
<td>3</td>
<td>4.27 ± 0.23</td>
<td>4.79 ± 0.06</td>
<td>215 ± 69</td>
<td>–42</td>
<td>332 ± 254</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 11</td>
<td>1</td>
<td>5.05 ± 0.24</td>
<td>7.71 ± 0.10</td>
<td>100 ± 11</td>
<td>–10</td>
<td>646 ± 223</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 12</td>
<td>1</td>
<td>3.30 ± 0.25</td>
<td>4.57 ± 0.11</td>
<td>110 ± 20</td>
<td>–14</td>
<td>335 ± 223</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 12</td>
<td>2</td>
<td>2.60 ± 0.14</td>
<td>3.65 ± 0.03</td>
<td>98 ± 16</td>
<td>–14</td>
<td>473 ± 394</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 13</td>
<td>1</td>
<td>3.80 ± 0.26</td>
<td>5.91 ± 0.08</td>
<td>91 ± 14</td>
<td>–13</td>
<td>433 ± 222</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 14</td>
<td>1</td>
<td>2.00 ± 0.11</td>
<td>2.92 ± 0.02</td>
<td>77 ± 14</td>
<td>–13</td>
<td>600 ± 625</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 15</td>
<td>1</td>
<td>9.53 ± 2.23</td>
<td>8.81 ± 0.08</td>
<td></td>
<td></td>
<td>157 ± 54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 17</td>
<td>1</td>
<td>5.20 ± 0.81</td>
<td>7.11 ± 0.06</td>
<td>126 ± 61</td>
<td>–39</td>
<td>56 ± 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 18</td>
<td>1</td>
<td>2.98 ± 0.13</td>
<td>3.68 ± 0.05</td>
<td>144 ± 25</td>
<td>–20</td>
<td>757 ± 625</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>zircon 19</td>
<td>1</td>
<td>4.07 ± 0.27</td>
<td>4.03 ± 0.05</td>
<td></td>
<td></td>
<td>237 ± 179</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>whole-rock</td>
<td>–</td>
<td>1.085 ± 0.022</td>
<td>1.095 ± 0.011</td>
<td>–</td>
<td>–</td>
<td>1.33 ± 3.68</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Activity and age calculations used the following decay constants: \(\lambda_{230} = 9.1577 \times 10^{-6} \ \text{a}^{-1} \); \(\lambda_{232} = 4.9475 \times 10^{-11} \ \text{a}^{-1} \); \(\lambda_{238} = 1.55125 \times 10^{-10} \ \text{a}^{-1} \). \(\infty \) indicates secular equilibrium.

Zircon analyses by ion microprobe; whole-rock (230Th)/(232Th) by ion microprobe, (238U)/(232Th) by isotope dilution thermal ionization mass spectrometry.

* reanalyzed after regrinding of ~5 μm and repolishing.
despite the large uncertainty resulting from low radiogenic Pb yield. U concentrations in zircon range between ∼ 60 and 750 ppm with an average of ∼ 300 ppm (Table 2) and are roughly similar to those reported for zircon in calc-alkaline rhyodacitic rocks (e.g., Mount Mazama; Bacon and Lowenstern, 2005).

Disequilibrium ages for La Vírgen zircon were calculated in two ways: by regression through all data points (excluding pre-Quaternary grains; Fig. 3) and by determining the slope of two-point isochrons through the whole-rock and zircon values. On average, both methods yield ages in close agreement (121 ± 12 and 118 ± 13 ka, respectively) with MSWD values (∼ 2.5 in both cases) significantly beyond the 95% likelihood interval (Mahon, 1996), indicating additional, non-analytical scatter in the population. The bimodal distribution in the age histogram and probability density plots (Fig. 4) suggests the presence of two main Late Pleistocene zircon populations. Using the mixing algorithm of Sambridge and Compston (1994), ages of 96 ± 6 and 161 ± 14 ka are obtained that correspond closely to the two peaks in the probability density curve (Fig. 4). Multiple analyses on grain 10 (Fig. 5) yielded ages that range from 160 ± 20 ka (rim) to 289 ± 100 ka (core). Although these ages overlap within 2σ uncertainty,
resorption and overgrowth textures visible in the CL image of grain 10 (Fig. 5) suggest that individual crystals may record growth periods that could be separated by several 10,000 years.

Due to their relatively low U contents (average ∼250 ppm; Table 3), zircons from Aguajito and La Reforma ignimbrites yielded radiogenic \(^{206}\)Pb typically <80% (Fig. 6; Table 3). Regression ages after correction for initial disequilibrium (Schmitt et al., 2003) are 1.38 ± 0.03 Ma (n=12; MSWD = 1.0) and 1.17 ± 0.07 Ma (n=23; MSWD = 1.3), suggesting homogeneous zircon populations in each sample within analytical uncertainty. Notably, pre-Quaternary zircons are absent in the Aguajito and La Reforma samples, and zircons with U–Pb ages equivalent to those found in Aguajito and La Reforma are lacking in the La Virgen sample.

Eight single-grain laser zircon (U–Th)/He analyses from polished and unmodified bulk samples from La Virgen yielded an average equilibrium (U-Th)/He age of 29±2 ka (MSWD = 2.4). This date, however, represents a minimum age because initial disequilibrium \(^{230}\)Th deficit due to fractionation between Th and U during zircon crystallization is not accounted for (Farley et al., 2002). Using SIMS zircon and TIMS whole-rock U/Th values, mineral–magma partitioning coefficients are calculated that allow an estimate of the initial \(^{230}\)Th to be ∼20% of the equilibrium value. On the other hand, pre-eruptive zircon residence will mitigate the initial disequilibrium of \(^{230}\)Th (Farley et al., 2002). From the difference between the Th–U zircon crystallization (using an average age of 120±20 ka; see above) and the (U–Th)/He eruption ages, we estimate that at the time of the eruption \(^{230}\)Th had increased to ∼65±5% of the equilibrium value. The weighted mean of all \(^{230}\)Th-deficit corrected zircon (U–Th)/He ages yields an eruption age for the La Virgen tephra of 36±3 ka (Table 1 and Fig. 7).

5. Discussion

5.1. Eruption age of La Virgen tephra

Previous age determinations on minerals or glasses from La Virgen pumice were hampered by the lack of suitable high-K phases such as sanidine for K–Ar or \(^{40}\)Ar/\(^{39}\)Ar dating. There are, however, published results based on indirect dating methods: \(^{14}\)C dating of a single carbonized wood fragment found within the middle section of the La Virgen deposit (Capra et al., 1998) and cosmogenic He dating of basalt lava locally covering the La Virgen deposit (location BL in Fig. 2), therefore providing a minimum age estimate for the eruption age of the La Virgen tephra (Hausback and Abrams, 1996). The ages obtained by these methods (6515±75 yr B.P. and >26±4 ka, respectively) are inconsistent with each other and Consag’s map interpreted as evidence for an historic eruption (Ives, 1962). Our disequilibrium-corrected (U–Th)/He age of 36±3 ka, however, is in agreement with the cosmogenic He surface exposure age. In fact, a potential systematic bias of He surface exposure ages to younger ages from unaccounted denudation suggests that the time gap between the La Virgen eruption and emplacement of the basalt flow could have been rather short, on the order of several 1000 years or less.

There are precedents for problematic \(^{14}\)C charcoal dates that dramatically underestimated the age of a deposit because of sample alteration and physical translocation (Bird et al., 2002). The relation of the Capra et al. (1998) carbonized wood fragment to the La
<table>
<thead>
<tr>
<th>Unit</th>
<th>Sample</th>
<th>Grain</th>
<th>Spot</th>
<th>206Pb/238U ($\times 10^{-3}$)</th>
<th>207Pb/235U ($\times 10^{-3}$)</th>
<th>207Pb/206Pb</th>
<th>204Pb/206Pb ($\times 10^{-3}$)</th>
<th>% radiogenic 206Pb</th>
<th>f (206Pb)</th>
<th>Age (Ma)</th>
<th>± (Ma)</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Reforma</td>
<td>BH00R40</td>
<td>1</td>
<td>1</td>
<td>0.917 0.166 72.0 15.8 0.68 0.569 0.093</td>
<td>37.6 15.4 33.1 1.05 2.05 1.39 93</td>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R40</td>
<td>3</td>
<td>1</td>
<td>0.333 0.027 17.4 2.8 0.86 0.379 0.037</td>
<td>73.9 16.2 57.5 1.06 1.31 0.23 805</td>
<td>768</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R40</td>
<td>5</td>
<td>1</td>
<td>0.418 0.055 25.1 6.1 0.86 0.435 0.063</td>
<td>39.3 14.9 50.2 1.07 1.44 0.49 216</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R40</td>
<td>7</td>
<td>1</td>
<td>0.249 0.015 6.4 1.1 0.80 0.188 0.025</td>
<td>43.3 9.2 81.9 1.06 1.39 0.11 1272</td>
<td>1111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R40</td>
<td>7</td>
<td>2</td>
<td>0.199 0.006 2.53 0.26 0.57 0.092 0.008</td>
<td>32.6 5.3 94.1 1.05 1.26 0.04 1181</td>
<td>1574</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R40</td>
<td>8</td>
<td>1</td>
<td>0.534 0.068 38.0 7.9 0.74 0.517 0.074</td>
<td>32.9 14.8 39.8 1.07 1.46 0.63 158</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R40</td>
<td>9</td>
<td>1</td>
<td>0.272 0.015 9.30 1.16 0.55 0.248 0.026</td>
<td>21.2 8.2 74.2 1.07 1.39 0.12 212</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R40</td>
<td>9</td>
<td>2</td>
<td>0.286 0.016 10.1 2.2 0.76 0.256 0.045</td>
<td>23.0 10.3 73.2 1.07 1.44 0.16 443</td>
<td>253</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R40</td>
<td>19</td>
<td>1</td>
<td>0.499 0.065 30.8 5.4 0.87 0.447 0.039</td>
<td>110 31 48.8 1.06 1.66 0.51 136</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R40</td>
<td>19</td>
<td>2</td>
<td>0.466 0.060 27.0 4.8 0.85 0.419 0.041</td>
<td>24.1 12.0 52.3 1.06 1.66 0.47 136</td>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R40</td>
<td>20</td>
<td>1</td>
<td>0.756 0.145 59.5 13.3 0.89 0.571 0.059</td>
<td>59.8 23.4 33.0 1.06 1.70 1.19 99</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R40</td>
<td>20</td>
<td>2</td>
<td>0.479 0.081 41.7 9.2 0.85 0.632 0.075</td>
<td>31.1 19.8 25.1 1.12 0.87 0.73 183</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aguajito</td>
<td>BH00R41</td>
<td>1</td>
<td>1</td>
<td>1.48 0.29 149 29 0.89 0.734 0.067</td>
<td>57.7 18.5 12.0 1.09 1.24 2.46 68</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R41</td>
<td>2</td>
<td>1</td>
<td>0.943 0.149 66.1 14.0 0.86 0.508 0.056</td>
<td>34.0 11.6 41.0 1.04 2.59 1.24 167</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R41</td>
<td>2</td>
<td>2</td>
<td>0.431 0.028 33.4 1.8 0.29 0.562 0.040</td>
<td>63.2 14.0 34.1 1.10 1.04 0.21 159</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R41</td>
<td>3</td>
<td>1</td>
<td>0.940 0.167 90.8 21.0 0.91 0.700 0.071</td>
<td>29.9 10.9 16.4 1.10 1.09 1.59 131</td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R41</td>
<td>4</td>
<td>1</td>
<td>0.612 0.119 55.1 11.3 0.86 0.652 0.069</td>
<td>43.8 14.7 22.5 1.11 0.98 1.00 215</td>
<td>87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R41</td>
<td>5</td>
<td>1</td>
<td>0.971 0.199 95.9 22.5 0.92 0.717 0.068</td>
<td>56.3 14.2 14.3 1.11 0.99 1.80 167</td>
<td>57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BH00R41</td>
<td>6</td>
<td>1</td>
<td>0.479 0.081 41.7 9.2 0.85 0.632 0.075</td>
<td>31.1 19.8 25.1 1.12 0.87 0.73 183</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Sample</td>
<td>Radioisotope</td>
<td>Activity</td>
<td>Age (Ma)</td>
<td>Error (Ma)</td>
<td>Reproducibility</td>
<td>Note</td>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>----------------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BH00R41</td>
<td>7</td>
<td>0.612</td>
<td>0.105</td>
<td>53.2</td>
<td>12.1</td>
<td>0.90</td>
<td>0.630</td>
<td>54.7</td>
<td>20.9</td>
<td>1.10</td>
<td>1.10</td>
<td>0.96</td>
<td>148</td>
</tr>
<tr>
<td>BH00R41</td>
<td>9</td>
<td>0.452</td>
<td>0.060</td>
<td>33.4</td>
<td>6.7</td>
<td>0.83</td>
<td>0.536</td>
<td>0.063</td>
<td>30.3</td>
<td>12.8</td>
<td>37.3</td>
<td>1.09</td>
<td>1.19</td>
</tr>
<tr>
<td>BH00R41</td>
<td>9</td>
<td>0.270</td>
<td>0.015</td>
<td>14.8</td>
<td>2.9</td>
<td>0.42</td>
<td>0.399</td>
<td>0.072</td>
<td>44.9</td>
<td>17.1</td>
<td>54.9</td>
<td>1.09</td>
<td>1.04</td>
</tr>
<tr>
<td>BH00R41</td>
<td>11</td>
<td>0.554</td>
<td>0.106</td>
<td>50.1</td>
<td>12.3</td>
<td>0.91</td>
<td>0.656</td>
<td>0.069</td>
<td>77.7</td>
<td>24.0</td>
<td>22.1</td>
<td>1.12</td>
<td>0.88</td>
</tr>
<tr>
<td>BH00R41</td>
<td>12</td>
<td>0.376</td>
<td>0.044</td>
<td>29.2</td>
<td>7.1</td>
<td>0.82</td>
<td>0.563</td>
<td>0.091</td>
<td>46.8</td>
<td>16.3</td>
<td>33.9</td>
<td>1.11</td>
<td>0.91</td>
</tr>
<tr>
<td>BH00R41</td>
<td>13</td>
<td>0.902</td>
<td>0.060</td>
<td>89.9</td>
<td>9.8</td>
<td>0.84</td>
<td>0.724</td>
<td>0.047</td>
<td>58.9</td>
<td>12.2</td>
<td>13.4</td>
<td>1.09</td>
<td>0.85</td>
</tr>
<tr>
<td>BH00R41</td>
<td>14</td>
<td>0.458</td>
<td>0.050</td>
<td>40.3</td>
<td>6.0</td>
<td>0.78</td>
<td>0.638</td>
<td>0.060</td>
<td>48.0</td>
<td>14.2</td>
<td>24.3</td>
<td>1.12</td>
<td>0.81</td>
</tr>
<tr>
<td>BH00R41</td>
<td>15</td>
<td>0.417</td>
<td>0.032</td>
<td>32.5</td>
<td>3.5</td>
<td>0.84</td>
<td>0.565</td>
<td>0.034</td>
<td>46.9</td>
<td>10.9</td>
<td>33.6</td>
<td>1.10</td>
<td>0.99</td>
</tr>
<tr>
<td>BH00R41</td>
<td>16</td>
<td>0.748</td>
<td>0.142</td>
<td>76.4</td>
<td>17.8</td>
<td>0.91</td>
<td>0.740</td>
<td>0.074</td>
<td>42.4</td>
<td>14.2</td>
<td>11.3</td>
<td>1.18</td>
<td>0.64</td>
</tr>
<tr>
<td>BH00R41</td>
<td>17</td>
<td>0.676</td>
<td>0.107</td>
<td>62.9</td>
<td>12.0</td>
<td>0.84</td>
<td>0.674</td>
<td>0.070</td>
<td>30.1</td>
<td>12.7</td>
<td>19.7</td>
<td>1.11</td>
<td>0.95</td>
</tr>
<tr>
<td>BH00R41</td>
<td>18</td>
<td>0.591</td>
<td>0.093</td>
<td>56.0</td>
<td>11.6</td>
<td>0.88</td>
<td>0.687</td>
<td>0.070</td>
<td>37.8</td>
<td>12.4</td>
<td>18.1</td>
<td>1.13</td>
<td>0.78</td>
</tr>
<tr>
<td>BH00R41</td>
<td>19</td>
<td>0.956</td>
<td>0.165</td>
<td>90.3</td>
<td>18.0</td>
<td>0.87</td>
<td>0.867</td>
<td>0.067</td>
<td>73.4</td>
<td>18.2</td>
<td>18.2</td>
<td>1.09</td>
<td>1.22</td>
</tr>
<tr>
<td>BH00R41</td>
<td>31</td>
<td>0.622</td>
<td>0.079</td>
<td>52.2</td>
<td>10.1</td>
<td>0.94</td>
<td>0.609</td>
<td>0.052</td>
<td>53.8</td>
<td>10.5</td>
<td>28.1</td>
<td>1.08</td>
<td>1.22</td>
</tr>
<tr>
<td>BH00R41</td>
<td>33</td>
<td>0.569</td>
<td>0.074</td>
<td>41.3</td>
<td>6.9</td>
<td>0.82</td>
<td>0.526</td>
<td>0.051</td>
<td>40.5</td>
<td>13.1</td>
<td>38.7</td>
<td>1.07</td>
<td>1.51</td>
</tr>
<tr>
<td>BH00R41</td>
<td>36</td>
<td>0.884</td>
<td>0.131</td>
<td>73.5</td>
<td>12.0</td>
<td>0.91</td>
<td>0.603</td>
<td>0.042</td>
<td>56.8</td>
<td>13.4</td>
<td>28.8</td>
<td>1.06</td>
<td>1.74</td>
</tr>
<tr>
<td>BH00R41</td>
<td>38</td>
<td>1.05</td>
<td>0.10</td>
<td>92.9</td>
<td>10.5</td>
<td>0.88</td>
<td>0.640</td>
<td>0.034</td>
<td>37.5</td>
<td>6.8</td>
<td>24.1</td>
<td>1.05</td>
<td>1.73</td>
</tr>
</tbody>
</table>

La Virgen
BH91B10 3 1 40.1 1.5 322 17 0.84 0.058 0.002 0.516 0.129 99.2 1.00 252 4 238 126
BH91B10 8 1 20.2 3.1 141 22 0.99 0.050 0.001 0.017 0.020 100.0 1.00 129 1 656 423
BH91B10 15 1 3.54 0.52 32.6 39.8 0.42 0.067 0.078 14.24 2.09 73.4 1.00 25.1 3 269 133
BH91B10 19 1 40.7 0.4 290 8 0.028 0.052 0.002 0.590 0.217 99.1 1.00 255 3 106 62
BH91B10 10 1 0.050 0.008 5.07 1.06 0.81 0.734 0.090 93.61 42.73 12.1 3.25 0.127 0.081 195 98
BH91B10 12 1 13.8 0.3 112 6 0.51 0.051 0.003 0.509 0.393 99.6 1.00 101 1.7 74 42

Note: cc concordia error ellipse correlation coefficient.

f^{230}Th disequilibrium correction factor calculated from $(\text{Th}/U)_{\text{hbl}}/(\text{Th}/U)_{\text{meq}}$ assuming $(\text{Th}/U)_{\text{meq}}=2.86$.

Slope of calibration curve Pb/U relative sensitivity vs. UO$/U^+$ = 1.70 ($n=10$; December 22 2003) and 2.31 ($n=7$; December 30 2003).

Reproducibility of AS-3 206Pb/238U age = 2.7% 1 σ rel. (December 22 2003) and 4.2% (December 30 2003).

* 204Pb corrected; all others 207Pb corrected using common Pb compositions: 206Pb/204Pb = 18.86, 207Pb/204Pb = 15.62.
Virgen deposit is difficult to evaluate without careful documentation of the field site. It could be a remnant root fragment from a plant growing on the deposit. Alternatively, it is conceivable that charcoal from wildfires could have been entrained by subsequent reworking of the La Virgen deposit, e.g. by a landslide. Either of these scenarios could explain the younger date. In this context, it is also important to point out that He loss from La Virgen zircons by post-depositional thermal events such as wildfires (Mitchell and Reiners, 2003) or emplacement of younger lava flows, can be ruled out because the sample was from a vertical section that is sufficiently insulated from the surface by several meters of overlying rocks, and younger lava flows are absent in the sample location.

In summary, we consider 36±3 ka as a reliable estimate for the age of the La Virgen eruption that corroborates previous constraints from cosmogenic He dating. Historic accounts for a recent eruption of Tres Vírgenes may instead refer to landslides, steam release from hydrothermal activity (Capra et al., 1998), or potentially to an eruption of the latest summit andesite lava erupted from Las Tres Virgenes. Furthermore, one of us (B. H.) received notification of a possible eruption of Volcán Tres Virgenes a few years ago that turned out to be a wild fire.
120,000 yr of crystal residence. The differences between
As discussed above, the difference between (U–
T)He ages for single and bulk zircon samples from La Virgen tephra.
Fig. 7. Disequilibrium-corrected and residence-time-corrected (U–
Th)/He ages for single and bulk zircon samples from La Virgen tephra.
Error bars (1σ) for individual (U–Th)/He symbols reflect measurement
and α-ejection uncertainties only. The error for the weighted
average (U–Th)/He age is scaled by the square-root of the MSWD
(MSWD=3.7; n=8) to account for non-propagated uncertainties in
residence time parameters, and assumes an uncertainty in the average
U–Th zircon age of ~17%.

5.2. Pre-eruptive evolution and longevity of the La
Virgen magma system

In the first order, La Virgen zircon ages fall into two
groups: Late Pleistocene zircons with individual ages
between ~300 and ~70 ka (Fig. 4), and xenocrystic
zircons with ages significantly older than those from the
Tres Vírgenes–Aguajito–La Reforma centers. The presence
of xenocrystic zircons is clear evidence for crustal
contamination in the La Virgen magma system. By contrast,
xenocrystic zircon is absent in Aguajito and La
Reforma samples. This is surprising as La Reforma
caldera contains Cretaceous granitic basement in its
central resurgent block (Schmidt, 1975). While the lack of
older zircon could be interpreted as a lack of crustal
contamination of the Aguajito and La Reforma magmas,
an alternative explanation could be that xenocrystic
zircon became resorbed in a hot and zircon undersaturated
melt at the early stages of magma generation. Further
study using radiogenic (e.g., Sr, Nd, Pb) or stable (e.g.,
oxogen) isotopes might help to clarify this question.

U–Th and U–Pb zircon dating has revealed the presence
of zircon populations whose crystallization signifi-
cantly predates the eruption ages of their host rocks.
As discussed above, the difference between (U–Th)/He
and U–Th ages for La Virgen indicates ~60,000–
120,000 yr of crystal residence. The differences between
U–Pb zircon and published K–Ar ages for Aguajito and
La Reforma (Table 2) also suggest that zircon crys-
tallization in these magmas significantly predates the eruptions, similar to evidence for pre-eruptive crystal
residence in other silicic volcanic systems (e.g., Reid et
al., 1997; Bindeman et al., 2001; Schmitt et al., 2003;
Miller and Wooden, 2004; Bacon and Lowenstern,
2005). In those previous studies, the difference between
zircon crystallization age and eruption age was based on
the comparison between U–Th (U–Pb) ages of zircon
and K–Ar (Ar–Ar) ages of high-K phases such as
sandine. Here, we demonstrated that U–Th and (U–
Th)/He ages for the same materials yield estimates for
pre-eruptive residence that agree well with those
inferrred from U–Th–Pb and K–Ar geochronology.

The presence of a multimodal zircon age distribution
(Fig. 4) implies multiple episodes during which a
magma batch cooled to its zircon saturation temperature
of ~800 °C (using the calibration from Watson and
Harrison, 1983, and La Virgen pumice compositions
from Sawlan, 1986 and Capra et al., 1998). If we assume
that zircon crystallized during magma cooling at a shal-
low storage level, we can also conclude that no net
temperature decrease occurred in this shallow magma
storage zone over a period of at least ~120 ka. It is
important to emphasize that over this time interval
temperature fluctuations (heating and cooling cycles)
are likely. In fact, rounding and partial resorption of
zircon grains (including xenocrysts; Fig. 5) provide
evidence for magma reheating to a temperature >800 °C
prior to the La Virgen eruption. Crenulate margins of
CL-visible domains also exist within grains (Fig. 5) and
suggest multiple resorption and overgrowth events over
the ~10–100 ka lifetime of the magma system. This is
consistent with petrographic evidence that evolved silicic
melt mixed with less evolved recharge magma prior
to the eruption and thus became thermally rejuvenated
(Capra et al., 1998).

It is difficult to decide if crystals continuously resided
in a magma or partially crystallized mush or if they
became recycled by remelting of solidified earlier intru-
sions. The age gap between the younger peak in the
zircon U–Th age distribution and the eruption age
(Fig. 4) may indicate that zircon crystallization ceased
due to freezing of a silicic intrusion but continuous
magma residence cannot be completely ruled out in the
the case that our sampling overlooked the youngest zircon
growth episodes. The absence of zircon ages equivalent
to those present in Aguajito and La Reforma ignimbrites, however, clearly indicates that the La Virgen
eruption tapped a magma reservoir that was separate
from and significantly younger than those of Aguajito
and La Reforma.
Vírgen tephra predate the eruption by \(\sim \) 1 Million years. Emplacement of multiple, individually short-lived evolved magma batches at shallow crustal level occurred over time scales of 10,000 to 100,000 years that eventually culminated in a thermal rejuvenation event by recharge of basaltic magma and the amassment of several km\(^3\) of rhyodacitic magma (Capra et al., 1998). In the light of the relatively young eruption age and geochronologic evidence for the existence of a long lived thermal anomaly at Volcán Las Tres Virgenes, future eruptions should be anticipated.

6. Conclusions

(1) Holocene (Capra et al., 1998) eruption of Las Tres Virgenes volcano is inconsistent with disequilibrium-corrected (U–Th)/He zircon results for La Virgen tephra that indicate an eruption age of 36±3 ka; younger andesite summit lavas could possibly account for the historic report (Ives, 1962);

(2) (U–Th)/He zircon ages for the voluminous La Virgen tephra are consistent with the cosmogenic He exposure age (26±4 ka; Hausback and Abrams, 1996) of an overlying basalt lava, suggesting a near continuous eruption sequence;

(3) Zircon U–Th disequilibrium model ages of La Virgen tephra predate the eruption by \(\sim 60,000–120,000 \) yr. Partially resorbed zircon, an apparent gap between zircon crystallization and eruption ages, and multimodal U–Th zircon ages imply episodic zircon crystallization over several 10,000 years. Despite differences in their tectonic settings, the longevity of the heat source that sustained episodic intrusions and reheating at Las Tres Virgenes is comparable to what is observed for composite volcanoes in active arcs (e.g., Mt. Mazama; Bacon and Lowenstern, 2005);

(4) Earlier silicic ignimbrites that erupted from the adjacent Aguajito and La Reforma calderas yielded Early Pleistocene ages. Equivalent ages are absent among Las Tres Virgenes zircons. By contrast, xenocrystic zircon is common in La Virgen tephra. This implies a separate magma chamber for the La Virgen magma system and a significant role of basement assimilation;

(5) The time-interval for pre-eruptive zircon growth and residence considerably exceeds the period of recent dormancy. Thus, future eruptive activity of Las Tres Virgenes volcano appears consistent with its geologic history. Las Tres Virgenes is a potentially active volcano.

Acknowledgments

We thank Charles Bacon and an anonymous referee for their constructive reviews, and Bruce Marsh for the editorial handling of the manuscript. Lisa Stockli (University of Kansas) is thanked for her analytical support. Haibo Zou (UCLA) provided valuable assistance in the clean room facility. The ion microprobe facility at UCLA is partly supported by a grant from the Instrumentation and Facilities Program, Division of Earth Sciences, National Science Foundation.

Appendix A. U–Th ion microprobe analysis: Background corrections, standard reproducibility, and comparison to LA-ICP-MS techniques

U–Th ion microprobe dating of zircon utilizes the high sensitivity of secondary ionization mass spectrometry that is presently unrivaled by any other technique. Typically, 0.02 \(\mu \)g of zircon are consumed during a \(\sim 30 \) min analysis (at a sputter rate for an O\(^+\) primary beam of \(\sim 0.05 \) \(\mu \)m\(^3\)/nA/s), whereas LA-ICP-MS measurements require \(\sim 10 \) \(\mu \)g (Stirling et al., 2000). ThO\(^+\) is chosen for analysis, because it is \(\sim 10 \) times more abundant than Th\(^+\) during sputtering of zircon with O\(^+\). The useful yield for ThO\(^+\) is \(\sim 1.3\% \) in ion microprobe techniques, compared to \(\sim 0.3\% \) for LA-ICP-MS (\(^{238}\)U\(^+\); Stirling et al., 2000).

The Th–U sensitivity is calibrated by measuring \(^{208}\)Pb/\(^{206}\)Pb on concordant reference zircons (AS-3 and 91500; Paces and Miller, 1993; Wiedenbeck et al., 1995). In contrast to U–Pb dating of zircon where analytical precision is in many cases limited by the ability to monitor the U–Pb instrumental sensitivity (usually by calibrating the U–Pb relative sensitivity against UO\(^{\text{IV}}\)/U\(^{\text{VI}}\)), the observed variability in Th–U sensitivity is smaller, typically \(<1.4\%\). Instead, precision and accuracy are practically limited by counting statistics on \(^{230}\)ThO\(^+\) (\(\sim 0.2–5 \) cps) and the ability to perform an adequate correction for background. Sources for background on \(^{230}\)ThO\(^+\) include electron multiplier (EM) dark noise, scattered ions, and unresolved interferences (\(^{232}\)Th\(^2\)CO\(^2+\)). Fig. 8 shows that \(^{232}\)Th\(^2\)CO\(^2+\) is commonly insignificant on pure, Au-coated zircon, but can overwhelm the \(^{230}\)ThO\(^+\) signal if
carbon is been made available within the sputtered region. Thus, carbon coating or beam overlap with the epoxy mounting medium has to be rigorously avoided. In order to monitor $^{232}\text{Th}_{2}\text{CO}_2^{+}$, an additional mass station at 244.038 amu is included in the analysis protocol where the presence of $^{232}\text{ThC}^{+}$ can be detected. A second background mass station (246.300) is included to record EM dark noise and scattered ions adjacent to the $^{230}\text{ThO}^{+}$ peak (246.028 amu). Typical background count rates recorded on standard zircons are: 0.03 cps (246.300) and 0.07 cps (244.038). (^{230}Th)/(^{238}U) results for AS-3 and 91500 analyzed throughout the analytical period are summarized in Table 4. From this, it becomes obvious that using either the 246.300 or the averaged background from 246.300 and 244.038 yields average (^{230}Th)/(^{238}U) ratios that are accurate within ~1.7% (1σ mean). No background and 244.038 only corrections, by contrast, tend to overestimate and underestimate (^{230}Th)/(^{238}U) by ~3%, respectively.

For a typical ~30 min analysis, the in-run precision of (^{230}Th)/(^{238}U) for AS-3 standards averaged ~6% (1σ rel.; average U concentration ~700 ppm), and ~14% for low-U 91500 zircon (81.2 ppm U). Overall, the reproducibility on both standards is ~6% (1 standard deviation; MSWD=0.8), compared to ~2% for LA-ICP-MS (Stirling et al., 2000). It should be noted, however, that the material required for LA-ICP-MS is ~500 times that of an ion microprobe analysis, rendering individual crystal analysis as performed in this study impossible for current LA-ICP-MS techniques.

Table 4
Summary of (^{230}Th)/(^{238}U) results for standard zircons 91,500 and AS-3 calculated using different background correction schemes

<table>
<thead>
<tr>
<th>Correction on mass 246.029</th>
<th>(^{230}U)/(^{232}Th)</th>
<th>±</th>
<th>MSWD</th>
</tr>
</thead>
<tbody>
<tr>
<td>No background</td>
<td>1.036</td>
<td>0.016</td>
<td>1.7</td>
</tr>
<tr>
<td>246.300 only</td>
<td>1.001</td>
<td>0.017</td>
<td>0.7</td>
</tr>
<tr>
<td>244.038 only</td>
<td>0.969</td>
<td>0.017</td>
<td>1.1</td>
</tr>
<tr>
<td>Average of 246.300 and 244.038</td>
<td>0.985</td>
<td>0.017</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Data acquired between Dec 2003 and Feb 2005. Total number of analyses: $n=14$ (AS-3: $n=8$; 91500: $n=6$). ThO$^+/\text{UO}^+$ relative sensitivity factors between 0.88 and 0.95. Decay constants used: $\lambda_{230}\text{Th}: 9.1577 \times 10^{-6}$ a$^{-1}$; $\lambda_{238}\text{U}: 1.55125 \times 10^{-10}$ a$^{-1}$.

Fig. 8. High-mass resolution scans ($M/\Delta M= \sim 5000$) of (A) low-U zircon (G42728A with 24 ppm U; Wiedenbeck et al., 1995), (B) epoxy, and (C) area with primary beam overlapping epoxy and zircon in approximately equal proportions. Primary beam (O$^-$) intensity ~40 nA.
References

