
Erosion in southern Tibet shut down at ∼10 Ma due to
enhanced rock uplift within the Himalaya
Marissa M. Tremblaya,b,1, Matthew Foxa,b, Jennifer L. Schmidtc, Alka Tripathy-Langa,b, Matthew M. Wielickid,
T. Mark Harrisond,1, Peter K. Zeitlerc, and David L. Shustera,b

aDepartment of Earth and Planetary Science, University of California, Berkeley, CA 94720; bBerkeley Geochronology Center, Berkeley, CA 94709;
cDepartment of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA 18015; and dDepartment of Earth, Planetary and Space Sciences,
University of California, Los Angeles, CA 90095

Contributed by T. Mark Harrison, August 7, 2015 (sent for review June 19, 2015; reviewed by Bodo Bookhagen and Alison Duvall)

Exhumation of the southern Tibetan plateau margin reflects in-
terplay between surface and lithospheric dynamics within the
Himalaya–Tibet orogen. We report thermochronometric data from
a 1.2-km elevation transect within granitoids of the eastern Lhasa
terrane, southern Tibet, which indicate rapid exhumation exceed-
ing 1 km/Ma from 17–16 to 12–11 Ma followed by very slow ex-
humation to the present. We hypothesize that these changes in
exhumation occurred in response to changes in the loci and rate of
rock uplift and the resulting southward shift of the main topo-
graphic and drainage divides from within the Lhasa terrane to
their current positions within the Himalaya. At ∼17 Ma, steep
erosive drainage networks would have flowed across the Hima-
laya and greater amounts of moisture would have advected in-
to the Lhasa terrane to drive large-scale erosional exhumation.
As convergence thickened and widened the Himalaya, the oro-
graphic barrier to precipitation in southern Tibet terrane would
have strengthened. Previously documented midcrustal duplexing
around 10 Ma generated a zone of high rock uplift within the
Himalaya. We use numerical simulations as a conceptual tool to
highlight how a zone of high rock uplift could have defeated
transverse drainage networks, resulting in substantial drainage
reorganization. When combined with a strengthening orographic
barrier to precipitation, this drainage reorganization would have
driven the sharp reduction in exhumation rate we observe in
southern Tibet.
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The Himalaya–Tibet orogenic system, formed by collision
between India and Asia beginning ca. 50 Ma, is the most

salient topographic feature on Earth and is considered the ar-
chetype for understanding continental collision. Geophysical and
geologic research has illuminated the modern structure and dy-
namics of the orogen (1). Nonetheless, how the relatively low
relief and high elevation Tibetan plateau grew spatially and
temporally and what underlying mechanism(s) drove the pat-
terns of plateau growth remain outstanding questions.
In the internally drained central Tibetan plateau, evidence

from carbonate stable isotopes suggest that high elevations
persisted since at least 25–35 Ma (2, 3). Sustained high elevations
since shortly after collision commenced have also been used to
explain low long-term erosion rates in the internally drained
plateau interior (4–6). In contrast to the central plateau, the
externally drained Tibetan plateau margins serve as the head-
waters for many major river systems in Asia. Because externally
drained rivers provide an erosive mechanism to destroy uplifted
terrane, understanding why these rivers have not incised further
and more deeply into the Tibetan plateau is essential to decipher
how the plateau grew. Recent research in the eastern (7, 8) and
northern (9) Tibetan plateau indicates that erosion rates have
increased significantly since ∼10 Ma. These increases suggest
that rock uplift rates have also increased and that the plateau has
expanded to the east and north during this time [due to lower
crustal flow (7) or upper crustal extrusion (8) to the east and

structural reorganization to the north (9)], causing rivers to
steepen and erode at faster rates.
The history of the southern Tibetan plateau margin, on the

other hand, is less well understood. The southern Tibetan pla-
teau is presently drained by the Yarlung and Indus Rivers, which
each flow parallel to the Himalayan range for more than 1,000 km
before descending from the plateau at the Himalayan syntaxes.
Evidence from fossils and carbonate stable isotopes suggest that
high elevations in the southern Tibetan plateau persisted since at
least 15 Ma (10, 11) and potentially even before collision began
(12). Additionally, sediments from the Himalayan foreland,
Bengal, and Central Myanmar basins require external drainage
of the southern Tibetan plateau since at least 14 Ma and po-
tentially as early as 40 Ma (13–15). High elevations and ex-
ternal drainage since at least Middle Miocene time indicate that
rock uplift rates in the southern Tibetan plateau may have kept
up with the pace of river incision for tens of millions of years.
However, cosmogenic nuclide concentrations indicate low erosion
rates (typically <102 m/Ma) in both the Indus and Yarlung
drainages over the last several hundred thousand years (16, 17).
No data yet exist to test whether these slow erosion rates per-
sisted over longer 106- to 107-y timescales. Therefore, it is un-
certain how high elevations in the southern plateau have been
sustained: are long-term rock uplift and erosion rates both high
or have slow erosion rates persisted despite external drainage by
some other mechanism?
Here, we examine the exhumation history of the eastern part

of the Tibetan plateau’s southern margin using thermochronometry,
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a technique in which thermal histories of rocks are constrained by
the evolution of geochemical systems sensitive to temperatures
within Earth’s upper crust. We present apatite 4He/3He, apatite and
zircon (U-Th)/He, and biotite and K-feldspar 40Ar/39Ar thermo-
chronometry data from granitic bedrock samples of the Cretaceous–
Cenozoic Gangdese batholith in the eastern Lhasa terrane, south-
ern Tibet. Samples were collected along a 1.2-km elevation transect
near the eastern headwaters of the Lhasa River, a major tributary of
the Yarlung River (Fig. 1 and SI Appendix, Table S1). This ap-
proach is advantageous for several reasons. First, by using a suite of
thermochronometric systems sensitive to temperatures ranging from
∼30 °C to 350 °C, we can identify changes in exhumation rate over a
longer duration than would be possible with any subset of them.
Second, sampling along an elevation transect leverages the fact that
rocks at different elevations within a pluton share a similar exhu-
mation history but have different cooling histories. Resolvable
differences in the cooling histories between rocks at different ele-
vations can more tightly constrain the overall exhumation history
than the cooling history of a single elevation sample. Third, to avoid
the effects of local-scale tectonic exhumation, we collected samples
in a location that is not in the footwall of one of the north-south
trending rift systems in southern Tibet. Therefore, the data pri-
marily record temporal trends in erosional exhumation of the
region. With data from this sampling scheme, we use 3D
thermokinematic models to constrain the timing of both large-scale
unroofing of the Gangdese batholith and local, kilometer-scale
relief development due to river incision. From these data and
thermokinematic models, we develop a hypothesis for landscape
evolution within the southern Tibetan plateau that we illustrate
schematically using a simple numerical model.

Thermochronometry
The thermochronometric data from the elevation transect and
thermokinematic models are summarized in Figs. 2 and 3.
Apatite (U-Th)/He and 4He/3He thermochronometry are sensitive
to temperatures <100 °C and therefore reflect the thermal
histories of rocks within the uppermost few kilometers beneath
Earth’s surface. Apatite (U-Th)/He ages from the sampling
transect are relatively invariant with elevation, clustering be-
tween 16 and 11 Ma (Fig. 3A and SI Appendix, Table S5).
Apatite 4He/3He thermochronometry provides information
about both the (U-Th)/He age and radiogenic 4He distribution
of an apatite crystal (18); together these observations constrain
the most recent cooling history of each sample between 80 °C
and ∼30 °C (for greater detail, see SI Appendix). Apatite 4He/3He
data from five of the six transect samples (Fig. 2 and SI Appendix,
Figure S1) are consistent with rapid cooling to near surface tem-
peratures by 12–11 Ma (Fig. 2 F–J). 4He/3He release spectra of
apatite crystals from the lowest elevation transect sample, MZ07,
indicated significant zonation of the parent nuclides U and Th,
which was confirmed by laser ablation U-Th mapping (SI Ap-
pendix, Fig. S2). The 4He/3He release spectra and U-Th maps for
this sample are qualitatively consistent with rapid cooling to sur-
face temperatures in the Middle Miocene as well.
The zircon (U-Th)/He and 40Ar/39Ar systems are sensitive to

higher temperatures than the apatite (U-Th)/He system, pro-
viding information about rock thermal histories at deeper
crustal levels. Unlike the apatite (U-Th)/He ages, which are
relatively invariant with elevation and cluster in the Middle
Miocene, zircon (U-Th)/He ages exhibit significant variation
with elevation. The highest elevation sample MZ12 has a mean
zircon (U-Th)/He age of 40.9 ± 3.5 Ma, whereas the lowest
elevation sample MZ07 has a mean zircon (U-Th)/He age of
13.4 ± 1.9 Ma, which is indistinguishable from its apatite
(U-Th)/He age (Fig. 3A and SI Appendix, Table S6). K-feldspar
40Ar/39Ar age spectra contain excess 40Ar but portions are in-
terpretable using the multidomain diffusion model (SI Appendix,
Fig. S3) (19); overall the spectra are consistent with the pattern

seen in the zircon (U-Th)/He ages, with an older age spectrum
characterized by less 40Ar diffusion at the highest elevations and
younger age spectra characterized by more 40Ar diffusion at
lower elevations. Biotite 40Ar/39Ar ages from three transect
samples do not exhibit significant variation with elevation, with
an average ages across samples of 60.5 ± 0.3 Ma (Fig. 3A and SI
Appendix, Tables S7 and S8).
The differences in age–elevation relationships for this suite of

thermochronometers document the complete cooling history of
their host pluton and record major changes in cooling rate since
collision between India and Asia commenced. The dataset re-
quires at least three transitions in cooling rate. Pluton em-
placement at 67.7 ± 2.5 Ma occurred at a depth of 12.5 ± 1.7 km,
as determined by secondary ion mass spectrometry (SIMS) zir-
con U-Pb geochronology and Al-in-hornblende geobarometry
respectively (SI Appendix, Table S2). The emplacement time and
depth are consistent with initially rapid followed by declining
postemplacement cooling recorded by all of the biotite ages
and the K-feldspar 40Ar/39Ar data from the highest-elevation
sample, which shows little evidence of diffusive 40Ar loss. The
K-feldspar 40Ar/39Ar spectra from lower-elevation samples (SI
Appendix, Fig. S3) and the zircon (U-Th)/He ages document a
period of slow cooling through the Paleogene. This slow cooling
was followed by a sharp increase in cooling rate in the Neogene,
as evidenced by the increase in age–elevation slope between
the apatite and zircon (U-Th)/He systems (Fig. 3A). Finally, a
sharp decrease in cooling rate of at least two orders of magnitude
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Fig. 1. (A) Topography and (B) mean annual precipitation (MAP) in
southern Tibet and the Himalaya. The yellow star marks the city of Lhasa
and blue circles denote the sample locations. The following generalized
geologic structures are also shown in A: GCT, Great Counter Thrust; GT,
Gangdese Thrust; IYSZ, Indus-Yarlung Suture Zone; MBT, Main Boundary
Thrust; MCT, Main Central Thrust; MFT, Main Frontal Thrust; STD, South
Tibetan Detachment; WF, Woka fault. In B, major river networks draining
the southern Tibetan plateau and Himalaya are shown in black, with the
Yarlung River and the Lhasa River highlighted in white and tan, re-
spectively. C shows a detailed view of our sample locations and the sur-
rounding topography. Topography plotted from 90 m SRTM (Shuttle
Radar Topography Mission) data; MAP plotted from TRMM (Tropical
Rainfall Measurement Mission) 2B31 data collected between 1998 and
2009 (36); geologic structures based on Styron et al. (30), Decelles et al.
(31), Yin et al. (33), and Hodges (44).
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by ∼10 Ma is documented by the thermal histories most consis-
tent with the 4He/3He data (Fig. 2 F–J), with very little cooling
occurring since this time.

Thermokinematic Histories and Their Regional Significance
We constructed 3D thermokinematic models using the finite-
element code Pecube (20) to identify exhumation histories
consistent with the observed suite of thermochronometric data
(for details of modeling procedures, see SI Appendix). These
models predict thermochronometric ages and account for both
the effects of topography on the thermal structure of the crust
and nonsteady geothermal gradients due to exhumation-driven
heat advection. By confining the model domain to a 15 × 15-km
region around the sample transect, we minimize uncertainties
and complexities in boundary conditions associated with struc-
tures over longer lengthscales. Fig. 3 shows predicted ages (A)
and the corresponding cooling paths (B) for geologic scenarios
that successfully predict the entire dataset, minimizing the misfit
between observed and predicted thermochronometric ages. We
also consider geologic scenarios involving constant exhumation
rates, and scenarios that are consistent with thermochronometric
data from nearby regions including the internally drained portion
of the Lhasa terrane (6), the eastern Himalayan syntaxis (21),
and the eastern Tibetan plateau (22); we find that these latter
scenarios are excluded by our dataset for this portion of the
eastern Lhasa terrane (SI Appendix, Figs. S4 and S5).

Thermal paths that minimize the misfit between observed and
predicted ages for this suite of thermochronometers involve
cooling/exhumation between 0.2 and 0.5 km/Ma in the Late
Cretaceous–Paleocene until 50–45 Ma, very slow exhumation
(<0.01 km/Ma) from 50–45 to ∼17–16 Ma, rapid exhumation in
excess of 1.0 km/Ma beginning at 17–16 Ma, and then very slow
exhumation (<0.01 km/Ma and <750 m total) from 12–11 Ma to
the present (SI Appendix, Figs. S5–S8). These conclusions are
insensitive to the initial geothermal gradient (SI Appendix). We
note that a portion of the cooling before 50–45 Ma, which we
model as surface denudation in Pecube, must instead be asso-
ciated with cooling of the batholith after emplacement at 12.5 ±
1.7-km depth at 67.7 ± 2.5 Ma. We are unable to resolve whether
local relief was at steady state, increased during rapid exhumation
between 17–16 and 12–11 Ma, or decreased during slow exhu-
mation since 12–11 Ma. Importantly, the thermal histories most
consistent with the 4He/3He data exclude significant recent relief
development (Fig. 2 F–J), suggesting that the majority of the 1–2 km
of relief in the eastern Lhasa terrane has persisted for ∼10 Ma.
Our thermochronometric data and modeling require two

major changes in exhumation rate since the onset of India–Asia
collision: a significant increase in exhumation rate at 17–16 Ma
sustained for ∼5 Ma, followed by a significant slowing of exhu-
mation since then. As our samples are in the hanging wall of the
nearest major normal fault (Woka fault; Fig. 1A), we cannot
explain these large-magnitude changes in exhumation rate simply
as changes in local tectonic exhumation. Further, published
thermochronometric data throughout the externally drained
portion of the eastern (5, 23, 24) and central (25) Lhasa terrane,
as well as the northeastern Tethyan Himalaya (26, 27), demon-
strate that rapid exhumation rates (>1 km/Ma) were pervasive
across the present day southern plateau between ∼20 and 10 Ma
(see SI Appendix, Fig. S9 for sample locations). Notably, these
exhumation rates are comparable to the more recent and cur-
rently active exhumation observed south of the present day to-
pographic divide of the Himalaya (28). Our apatite 4He/3He data
indicate that remarkably little exhumation has occurred in the
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12032 | www.pnas.org/cgi/doi/10.1073/pnas.1515652112 Tremblay et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1515652112/-/DCSupplemental/pnas.1515652112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1515652112


southern Tibetan plateau since ca. 10 Ma, with the exception of
localized tectonic exhumation within north-south trending nor-
mal fault systems (29, 30). Although an overall slowdown in
exhumation was expected from previously published data (23,
25), the rapidity, magnitude, and duration of the decrease by
10 Ma required by our 4He/3He data have never before been
documented and are not explicitly anticipated by existing models
for the tectonic evolution of the southern Himalaya–Tibet oro-
gen. The shutdown of erosion in southern Tibet since ∼10 Ma
contrasts markedly with the exhumation histories in eastern and
northern Tibet where significant increases in erosion rate since
10 Ma are documented (7–9), suggesting that disparate mech-
anisms drove exhumation across different regions of the
Tibetan plateau.

A Landscape Evolution Hypothesis for Southern Tibet
We hypothesize that these two substantial changes in exhuma-
tion rate are a consequence of changes in rock uplift within the
Himalaya and southern Tibet. Specifically, we suggest that the
timing and distribution of rock uplift caused changes in both
drainage network organization and orographic precipitation at
the southern margin of the orogen, such that the main topo-
graphic and drainage divides shifted from within the Lhasa terrane
to their present southerly positions within the Himalaya by 10 Ma.
Below we describe details of this hypothesis and evidence that
supports it.
Given that exhumation is the difference between rock uplift

and surface uplift, two previously proposed scenarios for the
tectonic evolution of southern Tibet can be called on to explain
the rapid exhumation rates between 17–16 and 12–11 Ma that we
observe. Carbonate stable isotopes suggest that elevations of the
southern Tibetan plateau at this time were similar to modern
elevations (10, 11); this implies that rock uplift and exhumation
were roughly balanced, and therefore that rock uplift rates also
exceeded 1 km/Ma across the southern Tibetan plateau between
17–16 and 12–11 Ma. Simultaneous rapid rock uplift and exhu-
mation may have been caused by renewed underthrusting of
Greater Indian lithosphere following a slab break-off event
thought to have occurred during the Early Miocene (25, 31).
However, initiation of rapid exhumation could also have lagged
behind increased rock uplift rates, in which case surface eleva-
tions of the southern Tibetan plateau may have been significantly
higher at the onset of rapid exhumation. The latter scenario is
supported if rock uplift was associated with motion on the north-
dipping Gangdese Thrust system (23, 32) (Fig. 1A), which is thought
to have ceased by ∼23–18 Ma (32, 33). We cannot distinguish be-
tween these two mechanisms for rock uplift (renewed underthrust-
ing and motion on the Gangdese thrust) on the basis of our data
alone, but suggest that both could have contributed to the rock
uplift that enabled the rapid exhumation recorded by our samples.
Regardless of the mechanism and timing of rapid rock uplift

driving rapid exhumation between ∼17 and ∼11 Ma, it is im-
portant to recognize that erosion rates must have been fast at the
time of rapid exhumation. Several aspects of the modern oro-
genic configuration—with the main topographic and drainage
divides located within the Himalaya—would be prohibitive to
such widespread rapid erosion. Although the Yarlung River
drains >105 km2 of the southern Tibetan plateau, its erosive
capability upstream of the Namche Barwa massif is low (34),
both because the Yarlung River currently has a relatively
gentle channel slope (typically ∼0.1%) and because mean annual
precipitation rates are <0.5 m/y and in many places <0.2 m/y
across the drainage network (Fig. 1B) (35, 36). This precipitation
regime is strongly controlled by orographic precipitation across
the southern side of the Himalaya (35, 37). Although the
southern Tibetan plateau may have received more precipitation
in the past due to millennial scale climate variability (38), overall
arid conditions have likely persisted on million-year timescales in

the lee of the Himalaya orographic barrier. And although a
general relationship between precipitation and erosion rates has
not been identified, a global compilation of cosmogenic nuclide-
derived erosion rates indicates that nowhere on Earth today do
measured erosion rates equal or exceed 1.0 km/Ma where pre-
cipitation rates are <0.5 m/y (39).
A northward position of the main topographic and drainage

divides, on the other hand, would enable high erosion rates
across the southern Tibetan plateau before ∼10 Ma. Rather than
being routed hundreds of kilometers to the east through the
eastern Himalayan syntaxis, drainage networks originating in the
southern Lhasa terrane could have followed more direct, southerly
paths across the Himalaya. These proposed transverse rivers
would necessarily have steeper longitudinal profiles, perhaps
comparable to modern rivers draining the high Himalaya, and
thus much higher erosive capability than the current configu-
ration draining into the Yarlung River (34). Transverse rivers
would also be effective at steering precipitation farther north-
ward toward the interior of the plateau, analogous to transport
of moisture up the Siang River valley within the eastern syntaxis
today (Fig. 1B) (35). Additionally, a northward-shifted topo-
graphic divide may have resulted in a wetter precipitation regime
in the southern Tibetan plateau, especially if there was a more
gradual increase in elevation on the southern, windward side of
the Himalaya at that time (37).
Although not explicitly considered in geologic studies of the

Himalaya and sedimentary basins to the south, the pre-10-Ma
drainage and topographic configuration we propose is consistent
with observations from these regions. Steep transverse drainages
originating within the Lhasa terrane would not only promote
rapid erosion in southern Tibet but would also enable the well-
documented rapid exhumation of the Greater Himalaya Se-
quence in the Middle Miocene, which experienced coeval rapid
rock uplift due to motion on the Main Central Thrust (MCT;
Fig. 1A) (40–43). Such a surface configuration would not nec-
essarily imply low relief or low elevations across the Himalaya
sequences before ∼10 Ma, because thrust faulting, crustal
thickening, and exhumation within the Himalaya are well docu-
mented before and during this time (44, 45). Rather it suggests
that the highest topography was located to the north within the
Lhasa terrane, not unlike the modern orogen in which the
highest deformation and exhumation rates are located south of
the highest topography (28). Such a configuration would also
have delivered material derived from the Lhasa terrane to the
Himalayan foreland basin before ∼10 Ma, which sedimentary
provenance studies document (13, 46). This configuration does
not preclude the existence of a paleo-Yarlung River draining
from the Lhasa terrane to the Bengal or Central Myanmar basins
through the eastern Himalayan syntaxis (14, 15), but suggests
that this river did not extend hundreds of kilometers to the west
into the plateau interior.
The abrupt transition to extremely low exhumation rates ca.

10 Ma, and the persistence of low erosion rates since (Figs. 2 and
3), cannot be explained solely by changes in rock uplift within the
southern Tibetan plateau, as erosion rates take time to respond
to changes in rock uplift rate. For example, a regional-scale
transition from north-south shortening to east-west extension
across southern Tibet around 10 Ma (30) was most likely ac-
companied by decrease in rock uplift; however, we would expect
erosion rates to remain high despite these low rock uplift rates as
rivers incised deeper and further headward into the high-eleva-
tion plateau interior. We hypothesize that this transition was
instead forced by substantial rock uplift in the Himalaya related
to midcrustal duplexing in the Lesser Himalaya Sequence (41,
47). Rock uplift due to duplexing fast enough to outpace the
incision of transverse drainage networks would result in large-
scale drainage reorganization across the southern Tibetan plateau.
Preexisting topography along the Indus–Yarlung Suture Zone
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(IYSZ; Fig. 1A), associated with north-south extension in the
latest Oligocene (31), may have been exploited during this drainage
reorganization, routing rivers eastward and forcing them to
combine with the Yarlung River and flow through the narrow
eastern Himalayan syntaxis. Numerous geomorphic features, in-
cluding the presence of barbed tributaries (SI Appendix, Fig.
S10E), high elevation lakes (SI Appendix, Fig. S10F), and in-
dicators of decreased carrying capacity, such as hillslopes that
are steep but whose toes are buried beneath their own debris (SI
Appendix, Fig. S10G) and anabranching, sediment choked rivers
(SI Appendix, Fig. S10 B and E) suggest redirection of flow of
major rivers draining the southern Tibetan plateau. Importantly,
all of these features have been preserved due to slow erosion
rates on the plateau since ∼10 Ma.
Two aspects of this proposed drainage reorganization would

cause the observed shutdown of erosion in southern Tibet circa
10 Ma. First, the drainage network upstream of the eastern Hi-
malayan syntaxis would significantly increase in length while
draining a region at roughly the same elevations as before re-
organization. As a result, channel slope and therefore stream
power would transiently decrease in this upstream region. Si-
multaneously, this reorganization would have increased the
drainage area upstream of the eastern Himalayan syntaxis; the
resulting increase in stream power may have promoted the pulse
of rapid exhumation from ∼10 to 6 Ma in the easternmost
Himalaya (21) and enhanced the coupling between rapid rock
uplift and erosion at the Namche Barwa massif (48). Second,
precipitation would no longer be focused up transverse river
valleys into the plateau interior. Because the orographic barrier
to precipitation in southern Tibet strengthened as deformation
to the south thickened and widened the Himalaya through the
Middle Miocene, the steep drainages we envision would have
provided the only channels for substantial moisture penetration
to the north. Therefore, defeat of such transverse rivers would
have cemented the orographic barrier and led to sustained ari-
dification of the southern Tibetan plateau.
Rather than being transient, the low fluvial erosion rates that

persist in the eastern Lhasa terrane have likely been sustained by
the presence of a stationary, steepened reach or knickzone on
the Yarlung River in the eastern Himalayan syntaxis. This
knickzone results from coupling between focused rock uplift and
rapid erosion within the syntaxis, creating a high-elevation base
level for the drainage network upstream (49). On the basis of
sediment fill immediately upstream of the knickzone, Wang et al.
(50) call on knickzone generation at ∼2.5 Ma. However, we
consider this as a minimum age because our thermochrono-
metric data from much further upstream, as well as those of
Zeitler et al. (21), suggest a sustained high-elevation base level
for the Yarlung River in the eastern syntaxis since ∼10 Ma.
Persistence of this stationary knickzone also prevents pre-
cipitation within the Yarlung River valley from being transported
further upstream (Fig. 1B), maintaining arid conditions and low
erosion rates in the plateau interior.
To illustrate how our postulated spatial and temporal changes

in rock uplift rate would affect drainage networks, we performed
numerical landscape evolution simulations with the model DAC
(divide and capture) (51). These simulations are not designed
to reproduce the details of the geology and geometry of the
Himalaya–Tibet orogeny; instead, we use them as a conceptual
tool to explore how broad rock uplift patterns can affect drainage
networks. By incorporating (i) a numerical solution to the de-
tachment-limited stream power model for fluvial erosion and (ii)
an analytical solution for hillslope erosion processes on a dy-
namic, irregular grid, DAC is designed to efficiently simulate
large-scale geomorphic processes (SI Appendix). Running DAC
on a 400 × 200-km domain over 30 Ma, we first applied a con-
stant rock uplift rate over a large region of the model, allowing
the channel network to reach a steady state (Fig. 4 A and B). We

then applied a higher rock uplift rate in a focused band, as a
simplified model of rapid rock uplift caused by duplexing in the
Himalaya, to predict how the channel network would respond
(Fig. 4 C and D). Rock uplift rates outpace river incision along
this band, producing several features observed in southeastern
Tibet, including (i) channel network defeat and consequent river
diversion, (ii) high-elevation lake formation, and (iii) very slow
erosion rates in the region immediately north of the band of
focused rock uplift (Fig. 4D). As a consequence of the very slow
erosion rates and continued rock uplift, a high-elevation, low-
relief plateau forms in this region that is eventually incised by
rivers along its sides (Fig. 4C).
In concert with our thermochronometric observations, these

simulations indicate that river diversion and consequent reduction
of stream power and shutdown of erosion provides a plausible
mechanism for sustaining, if not generating, the high elevations and
relatively low relief topography of the externally drained southern
Tibetan plateau. These results suggests that the southern margin of
the Tibetan plateau has persisted not through an increase in rock
uplift rate directly, but through a decrease in erosion rate. Further,
plateau development in response to decreased erosion rates (Fig. 4)
likely plays an important role in plateau generation in convergent
orogens more generally, as previously suggested from mechanical
numerical models (52, 53).

Ways Forward
Numerous areas of future research can test our ideas about land-
scape evolution across the southern Tibetan plateau. Although
there is significant evidence for drainage reorganization within the
southern Tibetan plateau, detailed geologic investigations of the
geomorphology and fluvial deposits in intermontane basins north of
the present day drainage divide can provide more concrete tests for
whether transverse rivers existed before ∼10 Ma. Additionally, if
transverse rivers dissected the southeastern Lhasa terrane before
∼10 Ma, there ought to be material derived from the Cenozoic
Linzizong Group volcanics (the extrusive counterpart to the
Gangdese batholith) and Paleozoic to Mesozoic marine strata from

CA

DB

Fig. 4. Conceptual landscape evolution model using the code DAC (51). The
model is run over a 400 × 200-km domain for 30 My; two timesteps are
shown here (for full model details, see SI Appendix). In all panels, the
drainage network is colored according to drainage area. In the first time step
shown (A and B), the region north of the white dashed line experiences a
constant rock uplift rate of 1.5 km/Ma, whereas the region south experiences
a rock uplift rate of 0.3 km/Ma. A shows elevation and B shows erosion rates
at 6 My into the model run, as the channel network approaches a steady-
state configuration. Then, at 15 My into the run, a band of faster rock uplift
at 2.7 km/Ma is applied within white dashed oval in C and D. In the second
time step shown at 19 My (C and D), erosion rates behind the band of high
rock uplift rates decrease significantly (D), but because the rock uplift rate in
this region is still positive surface uplift occurs and a broad low-relief, high-
elevation plateau develops (C). Within this plateau, we observe features
similar to those observed in southeastern Tibet, including isolated lakes and
unusual channel geometries. We also observe a river that begins to incise the
plateau behind the band of high rock uplift rate, highlighted by the yellow
box in C and D, which may be analogous to the Yarlung River.
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the Lhasa terrane in Siwalik Group foreland basin deposits of that
age, particularly in Bhutan and northeastern India. Last, the timing
and severity of aridification and its relative influence on erosion
rates in the southern Tibetan plateau is less clear and is not
accounted for in our landscape evolution model. The role of pre-
cipitation can be explored with coupled climate and tectonomorphic
models, as well as geologic studies of Miocene age sediments, to see
whether independent evidence exists for the timing of aridification
of the southern Tibetan plateau.
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