
ABSTRACT

Geologic mapping and geochronological analysis in southwest (Kailas
area) and southeast (Zedong area) Tibet reveal two major episodes of
Tertiary crustal shortening along the classic Indus-Tsangpo suture in
the Yalu River valley. The older event occurred between ca. 30 and 24
Ma during movement along the north-dipping Gangdese thrust. The
development of this thrust caused extensive denudation of the
Gangdese batholith in its hanging wall and underthrusting of the
Xigaze forearc strata in its footwall. Examination of timing of major
tectonic events in central Asia suggests that the initiation of the
Gangdese thrust was approximately coeval with the late Oligocene ini-
tiation and development of north-south shortening in the eastern Kun-
lun Shan of northern Tibet, the Nan Shan at the northeastern end of the
Altyn Tagh fault, the western Kunlun Shan at the southwestern end of
the Altyn Tagh fault, and finally the Tian Shan (north of the Tarim
basin). Such regionally synchronous initiation of crustal shortening in
and around the plateau may have been related to changes in conver-
gence rate and direction between the Eurasian plate and the Indian
and Pacific plates. The younger thrusting event along the Yalu River
valley occurred between 19 and 10 Ma along the south-dipping Great
Counter thrust system, equivalent to the locally named Renbu-Zedong
thrust in southeastern Tibet, the Backthrust system in south-central
Tibet, and the South Kailas thrust in southwest Tibet. The coeval de-
velopment of the Great Counter thrust and the North Himalayan gran-
ite-gneiss dome belt is consistent with their development being related
to thermal weakening of the north Himalayan and south Tibetan crust,
due perhaps to thermal relaxation of an already thickened crust cre-
ated by the early phase of collision between India and Asia or frictional
heating along major thrusts, such as the Main Central thrust, beneath
the Himalaya.

INTRODUCTION

Intracontinental deformation resulting from the Cenozoic Indo-Asian
collision (Fig. 1) is manifested by both crustal- and lithosphere-scale
faulting (Peltzer and Tapponnier, 1988; Burchfiel et al., 1989, 1992; Yin
et al., 1994; Leloup et al., 1995; Harrison et al., 1996; Wang and Burchfiel,
1997) and a variety of associated geologic processes, including intracon-
tinental and continental-margin basin formation (Allen et al., 1991; Briais
et al., 1993), volcanism (Deng, 1978; Coulon et al., 1986; Arnaud et al.,
1992; Turner et al., 1993; Chung et al., 1998), anatexis (Le Fort, 1981; Deniel
et al., 1987; Harrison et al., 1995, 1997a; Searle et al., 1997a), and con-
comitant metamorphism (Treloar et al., 1989; Pognante, 1993; Hodges et al.,
1994; Macfarlane, 1995; Harrison et al., 1997b; Searle, 1996a). Since the
publication of the landmark papers of Molnar and Tapponnier (1975) and
Tapponnier and Molnar (1977) on the Cenozoic Indo-Asian collision, ef-
forts have been focused upon determining the spatial and temporal distri-
bution of the resulting deformation. It has been variably proposed that
Cenozoic deformation in Asia has been dominated by lithospheric thick-
ening (England and Houseman, 1986), lateral extrusion (Tapponnier et al.,
1982; Peltzer and Tapponnier, 1988), continental subduction (Argand,
1924; Powell and Conaghan, 1973; Willett and Beaumont, 1994; Jin et al.,
1996; Owens and Zandt, 1997), and lower-crustal channel flow (Zhao and
Morgan, 1985; Bird, 1991; Avouac and Burov, 1996; Royden et al., 1997).

In general, the contrasting hypotheses cited above make specific predic-
tions regarding the timing, style, rate, and magnitude of deformation that
can only be tested by integrated geologic, geochemical, and geophysical in-
vestigations. Within this context, it is of fundamental interest to examine the
kinematic evolution of the classic Indus-Tsangpo suture formed between
rocks of Indian and Asian affinities throughout the collision (denoted by
Great Counter thrust system in Fig. 1). Previous investigations have indi-
cated that the precollisional magmatic-arc rocks along the southern Asian
margin in the north are separated from the Paleozoic-Mesozoic sedimentary
strata on the Indian shelf in the south along a boundary that underwent re-
peated contractional deformation. The deformation is characterized by re-
versal of vergence from south-directed to north-directed thrusting during
late Oligocene and Miocene time (Yu and Zheng, 1979; Allègre, 1984;
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Girardeau et al., 1984; Burg, 1983; Burg and Chen, 1984; Burg et al., 1987;
Searle et al., 1987; Harrison et al., 1992; Ratschbacher et al., 1992, 1994;
Yin et al., 1994; Quidelleur et al., 1997). Movement on these faults appears
to have overlapped in time with that of long-recognized major thrusts in the
Himalayas (e.g., the Main Central thrust; Fig. 1). A recent deep-crustal seis-
mic reflection profile across the southernmost part of Tibet reveals (1) the
presence of the Main Himalayan thrust at about 40 km depth beneath the
Tethyan Himalaya, which forms the sole fault for major Himalayan thrusts
(Zhao et al., 1993, Nelson et al., 1996), and (2) the north-dipping South Ti-
betan detachment system (Burg and Chen, 1984; Burg et al., 1987; Burch-
fiel et al., 1992; cf. Pecher, 1991), which appears to flatten at a depth of

about 22 km, ~15–20 km above the Main Himalayan thrust (Makovsky et
al., 1996; Hauck et al., 1998). However, although the integration of recent
surface geologic investigations and subsurface geophysical surveys has pro-
vided a coherent geometric framework of the Himalayan orogen and its im-
mediate northern extension in south Tibet (e.g., Owens and Zandt, 1997),
key questions remain unanswered regarding the evolution of the suture be-
tween India and Asia. Specifically, why was south-directed thrusting initi-
ated along the collision front ~20–25 m.y. after initial impingement of con-
tinental crust had taken place during the early Eocene (Patriat and Achache,
1984; Gaetani and Garzanti, 1991; Le Fort, 1996). Moreover, what trig-
gered subsequent north-directed thrusting along this zone during the

Figure 1. Cenozoic tectonic map of the Indo-Asian collisional system and location of Figure 2.
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Miocene and how did the reversal in vergence relate to concurrent defor-
mation in the adjacent Himalaya?

In order to unravel the spatial and temporal evolution of the Indo-Asian
collision zone, we conducted geologic investigations in the southeastern
(Zedong) and southwestern (Kailas) areas of Tibet (Fig. 2). Although both
locations are situated along the traditionally defined Indus-Tsangpo suture
zone (Chang and Zheng, 1973; Allègre et al., 1984), the regional geologic
map of the Tibetan Plateau (Liu, 1988) and our own geologic observations
show that tectonic elements characteristic of suture zones (e.g., forearc
basins, melanges, ophiolitic fragments, etc.) are generally missing at most
locations. For example, the absence of the Xigaze forearc strata in southeast
Tibet prompted investigations that ultimately led to the discovery of the
Oligocene-Miocene Gangdese thrust in the Zedong area of southeastern Ti-
bet (Harrison et al., 1992; Yin et al., 1994). Since that reconnaissance study,
extensive field mapping and geochronological analyses have been con-
ducted in the Zedong and Lang Xian areas (Fig. 2). This investigation also
led to constraints upon the timing of the Renbu-Zedong thrust system.
Specifically, thrust activity was found to have occurred between 19 and 10
Ma in the Lang Xian region of southeastern Tibet (Quidelleur et al., 1997;
Fig. 2). To determine whether the Gangdese and the Renbu-Zedong thrusts
are regionally extensive along the Indus-Tsangpo suture, we also conducted
mapping and thermochronological analyses in the Kailas area of south-
western Tibet (Fig. 2).

This paper describes geologic relationships and lithologic units of the two
study areas based on field mapping at a scale of 1:100 000 (Fig. 2) and pre-
sents reconnaissance-level thermochronologic measurements for the Kailas
region. By coupling field mapping with thermochronological data from
both this and a companion study (i.e., Harrison et al., 1999), structures in the
Kailas and Zedong areas can be reasonably correlated. In particular, our
fieldwork and a regional synthesis of existing geologic maps suggests the
existence of a laterally continuous, south-dipping thrust system along the
Indus and Yalu River valleys in southern Tibet. As the length of this thrust
system is similar to that of the Main Central thrust (Fig. 1), its formation is
interpreted to mark a major stage of Himalayan evolution. Because the
thrust belt has a thin-skinned style and appears to have developed synchro-
nously with the North Himalayan granite belt (Schärer et al., 1986), we
speculate that its development may have been caused by thermal weaken-
ing beneath the Tethyan Himalaya that allowed southward subduction of the
north Himalayan and south Tibetan basement.

GEOLOGIC MAPPING IN SOUTHERN TIBET

Southeast Tibet (Zedong Area)

Modern geologic mapping and stratigraphic investigations in southeastern
Tibet date from the early 1950s (see Yu and Zheng, 1979, for references). Be-
tween 1975 and 1978, Chinese geologists participated in a systematic map-
ping project in the Lhasa-Zedong area (lat 28°–30°N, long 90°–96°E) that
established the general stratigraphic and structural framework in this region
(Yu and Zheng, 1979) and culminated in the publication of the 1:1000000
scale Geologic Map of the Lhasa Region. For example, the Renbu-Zedong
thrust of Yin et al. (1994) or the Backthrust system of Girardeau et al. (1984),
Burg and Chen (1984), and Ratschbacher et al. (1992) was first documented
on this geologic map and later extended westward to the Xigaze and Kailas
regions (Wang et al., 1983; Cheng and Xu, 1987). This fault was variously
named the Yalu Tsangpo fault (Yu and Zheng, 1979), or the Great Yalu
Tsangpo deep fault zone (Wang et al., 1983) in south-central Tibet, reflect-
ing its general trend along the Yalu River valley. It has also been called the
South Kailas thrust (Cheng and Xu, 1987) in southwest Tibet because of its
excellent exposure south of Mount Kailas. Subsequently, the Sino-French
(e.g., Allègre et al., 1984) and Royal Society–Academia Sinica expeditions

(e.g., Chang et al., 1986) resulted in a new series of regional geologic maps
for south-central and central Tibet (Burg, 1983; Kidd et al., 1988). However,
these international expeditions did not examine the Zedong area in detail, and
thus the existence of the Gangdese thrust was not documented during these
investigations. The contact between the Gangdese batholith and Tertiary con-
glomerates shown on the map of Yu and Zheng (1979), and the subsequently
published regional map of the Tibetan Plateau (Liu, 1988), was characterized
as an unconformity with Tertiary conglomerates atop the Cretaceous-Tertiary
Gangdese batholith. This contact was later recognized as a north-dipping
thrust, juxtaposing Gangdese igneous rocks over Tertiary conglomerates
(Yin et al., 1994).

Our mapping (Fig. 3) builds upon the earlier work of Yu and Zheng
(1979) and Yin et al. (1994). The latter study focused on documenting the
style and timing of the Gangdese thrust motion and was restricted to a rela-
tively small region. Subsequent, more extensive field mapping, conducted
at a scale of 1:100 000 and documented in the present study, provides im-
proved spatial coverage of the Gangdese thrust and the adjacent younger
Renbu-Zedong thrust (Figs. 3 and 4). The north-dipping Gangdese and
south-dipping Renbu-Zedong thrusts divide the study area into three struc-
tural domains (Fig. 3): the Gangdese hanging wall in the north, the Renbu-
Zedong hanging wall in the south, and the footwall shared by both faults.

Gangdese Thrust.The hanging wall of the Gangdese thrust consists of
Cretaceous-Tertiary granitoids (K-Tgr) of the Gangdese batholith, a se-
quence of Paleozoic and Mesozoic metasedimentary rocks (Pz-Mz), Creta-
ceous volcanic and interbedded clastic strata (Kvb and Kv), and a gneiss
complex (mgn) (Fig. 3). The metasedimentary rocks (Pz-Mz) above the
Gangdese thrust (Fig. 3) are mainly marble, phyllite, and schist with strong
stretching lineations near the Gangdese thrust. The metasedimentary se-
quence (Pz-Mz in Fig. 3) had been assigned to the Early Cretaceous on the
basis of a regional lithologic correlation (Yu and Zheng, 1979), although no
fossils have been found in these rocks. The fact that these rocks can equally
well be correlated with other Paleozoic and Mesozoic units in the region
leads us to assign them a much broader range of ages. The volcanic flow and
breccia units (Kv and Kvb in Fig. 3) consist of andesite, interbedded quartz
arenite, shale, pyroclastic breccias, and siltstone. The volcanic units are cor-
related with the Lower Cretaceous Linbuzhong Formation by Yu and Zheng
(1979). Near the Gangdese thrust, plagioclase phenocrysts in the andesites
are highly stretched and aligned uniformly in the direction parallel to the re-
gional stretching lineation in the mylonitic shear zone directly above the
Gangdese thrust.

A coarse-grained biotite-hornblende gneiss (mgn) of unknown age and
affinity is present as a tectonic sliver between two thrusts in the Gangdese
thrust fault zone (Fig. 3). The schistosity defined by coarse biotite and flat-
tened quartz grains within the gneiss is unlike fabrics exhibited by finer-
grained wall rocks within the hanging wall of the Gangdese thrust and in-
stead resembles that of the Amdo gneiss situated ~350 km north of Lhasa
(Liu, 1988; Kidd et al., 1988). Stretching lineations in the gneiss trend
N80°E, which is nearly perpendicular to the general trend of mylonitic lin-
eations in the shear zone of the Gangdese thrust (Fig. 3).

Above the thrust, the relative proportion of granitoid (K-Tgr in Fig. 3) to
wall rock (Pz-Mz in Fig. 3) increases eastward. This eastward increase in the
exposure area of plutonic rocks correlates with progressively higher meta-
morphic grades in the Tethyan metasedimentary rocks as the eastern syntaxis
is approached (Fig. 2; Liu, 1988; Quidelleur et al., 1997). The plutonic bod-
ies in the Zedong region are generally tabular in shape and parallel to relict
bedding and foliation in the hanging wall of the Gangdese thrust (Fig. 3). Fo-
liation is, in general, subparallel to the Gangdese thrust. The near-concor-
dance of fabric elements (relict bedding, foliation, tabular plutonic bodies)
with the Gangdese thrust is consistent with the interpretation that the present
exposure of the steeply dipping Gangdese thrust sheet (Fig. 4) likely origi-
nated along a subhorizontal detachment. The inferred geometry is consistent
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with a systematically decreased depth of exposure of the Gangdese batholith
north of our study area (Fig. 2; Liu, 1988; Copeland et al., 1995).

The main trace of the Gangdese thrust system is well exposed in several
places along the Yalu River (Figs. 3 and 5A). In most places, the Gangdese
thrust is marked by an ~50–150-m-thick mylonitic shear zone consisting of
marble, granitoid, and schist. Mesoscopic asymmetric folds, asymmetric
boudinage, minor reverse faults, and S-C fabrics in the mylonitic granitoids
all indicate a top-to-the-south sense of shear (Yin et al., 1994). Foliations are
well developed, and the general trend of lineations is between S20°W and

S20°E (Fig. 3). The dip angle of the fault varies considerably from 34° in
the central part of the study area to 75° in the east (Fig. 3). The abrupt
change in the strike and dip angle of the Gangdese thrust (east of D–D′;
Fig. 3) reflects postslip deformation of the fault surface.

Renbu-Zedong Thrust.The south-dipping Renbu-Zedong thrust in the
Zedong region, and its western extension, is the dominant structural element
of the suture zone (Heim and Gansser, 1939; Burg, 1983; Thakur and
Sharma, 1983; Yin et al., 1994; Ratschbacher et al., 1992, 1994; Quidelleur
et al., 1997; Searle et al., 1997b). Near Zedong, this fault juxtaposes an iso-
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clinally folded sequence of shale, siltstone, phyllite, and locally schist over
the melange, syenites, and Tertiary conglomerate. On the basis of fossils de-
scribed in similar strata (Yu and Zheng, 1979; Table 1) about 100 km west
of our study area, we conclude that the Tethyan strata we have examined are
likely Late Triassic in age. Finally we emphasize that east of the mapped
area, the hanging wall of the Renbu-Zedong fault is thrust over the trace of
the Gangdese thrust, clearly indicating that the former is a younger feature
(Yin et al., 1994; Fig. 2).

Isoclinal folding of the Tethyan strata in the Renbu-Zedong hanging wall
(Fig. 5B) is associated with pervasive slaty cleavage that consistently dips

south. Top-to-the-north, noncoaxial shear deformation is evident in the
folded rocks. For example, the orientation of ubiquitous en echelon quartz
veins suggests top-to-the-north shearing (Fig. 5C). Because these vein sets
are further deformed (faulted and folded) in a manner consistent with the
same sense of shear (Fig. 5C), protracted shear deformation is indicated.
The association of vein quartz with axial cleavage suggest that simple-shear
deformation and isoclinal folding were synchronous and likely related. We
interpret that isoclinal folding and north-directed noncoaxial deformation in
the folded rocks were related to Tertiary northward movement along the
Renbu-Zedong thrust. This interpretation is consistent with K/Ar dating of
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rocks in the hanging wall of the Gangdese
thrust; gn—gneissic complex of unknown
age; mf—mafic and ultramafic bodies;
Tr—Triassic strata in the hanging wall of
the Renbu-Zedong thrust. Note that the
Gangdese thrust, its hanging-wall bedding,
and tabular granitic bodies are subparallel.
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Figure 5. (A) The Gangdese thrust with complexly deformed, cliff-
forming marble beds in the hanging wall and Tertiary conglomerate in
the footwall. The fault surface, on which the person stands, dips about
30°N. View to the east. Ts—Tertiary conglomerate; Pz-Mz—mylonitic
gneiss directly above the Gangdese thrust. (B) Isoclinally folded Triassic
fine-grained sandstone and shale. View to the west. (C) En echelon quartz
veins cut across bedding of isoclinally folded Triassic strata. South-
dipping veins indicate top-to-the-north simple shear. North-verging,
folded veins are also consistent with bedding-parallel, top-to-the-north
noncoaxial deformation. (D) Thrusts in the Renbu-Zedong system, jux-
taposing serpentinite fragments of the melange complex over south-
dipping beds of Tertiary conglomerate. View to the west. (E) Marble
breccias in Tertiary conglomerate, which are matrix supported and
highly stretched.
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white mica from a synkinematic mica-bearing quartz vein in the Renbu-Ze-
dong fault zone near Renbu (Fig. 2); the white mica yielded an age of ca. 18
Ma (Ratschbacher et al., 1994).

The Renbu-Zedong fault zone consists of several imbricate thrusts in both
its footwall and hanging wall. Although the latter can be well located in the
field, the main trace of the Renbu-Zedong thrust itself is mostly covered by
talus in the mapped area. However, minor thrusts that juxtapose the melange
complex over Tertiary conglomerate is well exposed about 3 km east of
Zedong (Figs. 2 and 5D). At this locality, a highly sheared serpentinite block
is present in the hanging wall of a fault branch in the Renbu-Zedong thrust
system. The fault dips 28°S with striations trending to the southwest (Fig. 3).
Kinematic indicators (e.g., en echelon tension gashes, asymmetric folds, etc.)
in the rocks a few meters above and below the fault show a consistent top-to-
the-north sense of shear. In general, the dip angle of the cleavage in the Tri-
assic strata increases southward, from about 20–30° directly above the
Renbu-Zedong thrust to nearly vertical, 15–20 km south of the fault trace
(Fig. 3). Such a systematic change in cleavage dip may reflect a change in the
geometry of the Renbu-Zedong thrust at depth (see cross section E–E′ in
Fig. 4). An equally plausible interpretation of the variation in cleavage ori-
entation in the hanging wall of the thrust would be that the cleavage becomes
progressively steeper toward higher structural levels in the hanging wall.
Such a listric geometry is common in many mountain belts in the world (e.g.,
Mitra, 1994).

A key to testing the two alternative explanations is to detect whether bed-
ding changes systematically, as it would if cleavage and hanging-wall strata
rotate passively as the thrust sheet moves across a steep footwall ramp.
However, the folds in the study area above the Renbu-Zedong thrust are iso-
clinal (Fig. 5B). Thus, the bedding and cleavage are nearly parallel in gen-
eral except near the fold hinges, making it difficult to select between the two
possible structural interpretations.

Footwall of Gangdese and Renbu-Zedong Thrusts.Rocks exposed in
the footwall of the opposing thrusts include chert-dominated melange, sye-
nite bodies, and Tertiary conglomerates (Figs. 3 and 4). Locally, syenite is
thrust over melange, whereas the conglomerate unit is deposited uncon-
formably on top of both units. In addition to chert, the melange complex
contains blocks or domains of thinly bedded and massive quartzite, shale,
serpentinite, limestone, gabbros, and, locally, volcanic breccias. The ser-
pentinite blocks are highly sheared with abundant striations and are
uniquely distributed along the Renbu-Zedong fault zone. Limestone and
cherty layers in the melange complex are tightly folded and refolded, with

wavelengths and amplitudes on the order of several hundreds of meters.
Late Cretaceous fossils occur within elements of the melange complex near
Zedong (Yu and Zheng, 1979, p. 89; see Table 1). Yu and Zheng (1979) sug-
gested that these Upper Cretaceous rocks (Fig. 2) are correlative to the Cre-
taceous-Eocene Xigaze forearc strata farther to the west in the Xigaze area
(Fig. 1), which include both the middle to Upper Cretaceous Xigaze Group
(Wang et al., 1983; Wiedmann and Durr, 1995; Durr, 1996) and the overly-
ing lower Tertiary Quwu Formation (Wang et al., 1983). This correlation
supports the interpretation of Harrison et al. (1992) that the Xigaze forearc
once existed in southeastern Tibet and has been largely underthrust beneath
the Gangdese batholith along the Gangdese thrust system.

Lying unconformably on top of the melange and syenites is a >200-m-
thick sequence of Tertiary conglomerate referred to by Yu and Zheng (1979)
as the Luobusha Group (Table 1). Fossil occurrences reported by Yu and
Zheng (1979) for the Luobusha Group in the Zedong area (Table 1) suggest
an Oligocene depositional age, although fossils consistent with Eocene and
Miocene deposition are also present. An Oligocene age assignment is con-
sistent with our interpretation that the deposition of the Luobusha Group
was due to denudation of the Gangdese batholith and associated with thrust-
ing along the Gangdese thrust during this time (Yin et al., 1994; Harrison
et al., 1999). Cobbles and boulders within the Tertiary conglomerate, dom-
inantly marble and volcanic breccia, are typically matrix supported. Al-
though these clasts can be correlated with the rock units in the Gangdese
thrust hanging wall, granitic clasts are rarely present in the outcrops we ex-
amined. Bedding within the conglomerate is broadly folded with east-trend-
ing fold axes (Fig. 3). Adjacent to the Gangdese thrust, clasts are strongly
deformed and exhibit aspect ratios between 5:1 and 15:1 (Fig. 5E).

Southwest Tibet (Kailas Area)

Gansser first recognized a north-directed thrust that juxtaposes a flysch
complex over a sequence of conglomerate in the Kailas area (Heim and
Gansser, 1939). Heim and Gansser (1939) named this structure “the Great
Counter thrust” to contrast it with the dominantly south-directed thrusting
in the Himalaya to the south. The >2000-m-thick Kailas conglomerate
(Gansser, 1964) rests unconformably on top of granitoids of the Gangdese
batholith (Fig. 6).

Regional mapping of the Kailas region (lat 28°–32°N, long 78°–82°E)
by the Tibetan Bureau of Geology and Mineral Resources (Cheng and
Xu, 1987) extended the Great Counter thrust, renamed as the South

TABLE 1. PALEONTOLOGIC AGE CONSTRAINTS FROM FOSSILIFEROUS STRATA

Map Probable Fauna and flora reported
unit depositional age

Chert melange Late Cretaceous* Foraminifera: Orbitolina concava (Lamarck), O. sp. cf. O. lamina Ho, O. aperta (Erman), O.
(near Zedong) sp. cf. O. conica (Dinrchiac)

Corallina: Thamnasteria sp. cf. T. matsushitai Eguchi

Luobusha Group Oligocene(?)* Gastropods: Planorbis sp. cf. P. rotundata Brong, Bithynia sp., Lymnaea sp.
(near Zedong) (possibly Microlaminatus sp., Planorbarius sp., Gyraulus sp., Fluminicols sp., Amnicola sp.

Eocene–Miocene) Bivalves: Sphaerium sp. aff. S. rivicolam Lamarck, Acuticosta sp.
Algae: Charophyta gen. et sp. indet., Tectochara sp., Crofliella sp.
Plant fossils: Palmocarpon sp., Rhododendron sp.

Himalayan Tethyan Late Triassic* Bivalves: Halobia vietnamica Vukhus, H. sp. cf. H. yunnanensis Keed, H. sp. cf. H.
metasediments ganziensis Chen, H. sp. aff. H. styriaca Mojs., H. sp. cf. H. xizangensis Wen et Lan, H.
(near Longjiexue) sp. cf. H. cordillerana Smoth, H. sp. cf. H. comata Bittner, H. sp. cf. H. austyriaca Mojs., 

H. sp. cf. H. plicosa Mojs., Manticula ? sp., Posidonia sp. aff. P. wegensis Wissm.
Brachiopods: Koninckina sp.

Yiema Formation Cretaceous† Gastropods: Nerinea sp. cf. N. pauli Coquand
(in the Kailas Bivalves: Radiolitidae gen. et sp. indet.
area)

*Data source:Yu and Zheng (1979).
†Data source: Cheng and Xu (1987).
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Kailas thrust, 210 km farther to the east. The South Kailas thrust was in
turn linked by Liu (1988) with the “Great Yalu Tsangpo deep fault” of
Wang et al. (1983) in the Xigaze area. To the west, the displaced western
continuation of the South Kailas thrust across the Karakoram fault has
been recognized by Murphy et al. (1997b) (Fig. 6). This correlation sug-
gests that the post–middle Miocene dextral displacement of the Karako-
ram fault was <50 km at its southeastern termination. To avoid confusion,
we refer to the south-dipping thrust system in the Kailas area as the South
Kailas thrust system. We collectively refer to the overall south-dipping
thrust system developed along the Indus and Yalu River valleys in south-
ern Tibet (including the Backthrust system of Girardeau et al. [1984] and

Ratschbacher et al. [1992] and the Renbu-Zedong thrust of Yin et al.
[1994]) as the Great Counter thrust system (Fig. 1).

South Kailas Thrust System. Rocks within the Kailas area were
mapped in the summer of 1995 by A. Yin and M. Murphy at a scale of
1:100 000 (Fig. 7). The goals of this investigation were twofold: (1) to bet-
ter document the geometry and kinematics of north-directed thrusting in
the area and (2) to constrain the timing of thrusting of the South Kailas
thrust and the timing of denudation of the Gangdese batholith. The major
geologic features based on our mapping are briefly described below. The
Kailas conglomerate (Heim and Gansser, 1939; Gansser, 1964) or the
Kailas Formation (Cheng and Xu, 1987) rests unconformably on top of the

Figure 6. Geologic map of the Kailas–Gurla Mandhata region based on both our own mapping and a 1:1 000 000 geologic map of the region by
Cheng and Xu (1987).
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Figure 7. Geologic map (A) and cross section (B) of the Mount Kailas area. Mapping was conducted at a scale of 1:100 000. Numbers on map
and cross section are sample locations. Qal—Quaternary alluvial deposits in Gar Valley; K-Tgr—Cretaceous–Tertiary granitoids; Tkc—Tertiary
Kailas conglomerate; Kc—possible Cretaceous to Tertiary conglomerate and sandstone; lm—a limestone unit, possibly part of the Cretaceous
Xigaze Group (Liu, 1988); sch—schist of unknown age, possibly part of the Indian continental shelf deposits; ss—sandstone unit of unknown age
and origin; oph—ophiolite complex.
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Kailas magmatic complex (Honegger et al., 1982), part of the Gangdese
batholith (Fig. 2). The exposure of the Gangdese batholith in southwest Ti-
bet is limited to the southernmost region of the Gangdese Shan. North of
Mount Kailas (Fig. 2), the exposure is dominated by Late Cretaceous–early
Tertiary volcanic cover, indicating a systematic decrease in the amount of
denudation of the Gangdese batholith to the north (Fig. 2). The greater
amount of denudation in the southern part of the Gangdese batholith in the
Kailas and surrounding regions suggests oblique exposure of a tilted
crustal section along the south margin of the batholith, similar to that seen
in southeastern Tibet (Fig. 2).

Conglomerate beds dip a few degrees to the south immediately above the
unconformity (Fig. 7). The lower part of the Kailas conglomerate, about
200–400 m thick, is dominated by granitoid and volcanic cobbles that
record south-directed paleocurrents. The clasts can be directly correlated
with Gangdese granites and its volcanic cover (Heim and Gansser, 1939;
Honegger et al., 1982). The middle part of the formation, about 1500–2000 m
thick, consists of medium- to fine-grained sandstones, which we tentatively
interpret to have developed in a meandering fluvial setting. This sequence
shows a generally westward paleocurrent direction, which is parallel to the
trend of the South Kailas thrust. The inferred west-flowing drainage system
may have been controlled by the existence of a foredeep during the north-
ward emplacement of the South Kailas thrust system. The top part of the
Kailas conglomerate, at least 300 m thick, is characterized by pebbles and
cobbles of metamorphic schists, volcanic breccias, and purple and green
sandstones. In contrast to the granitic clasts, which dominate the lower part
of the Kailas conglomerate, these clasts are characteristic lithologies of the
South Kailas thrust system and thus must have been derived from the south.
The appearance of coarse clastic material deposited higher up in the Kailas
conglomerate is also associated with abundant northward paleocurrent in-
dicators (e.g., pebble imbricates), consistent with the above interpretation.

Immediately adjacent to the northernmost south-dipping thrust (fault (a)
in Fig. 7B), the Kailas conglomerate (Tkc in Fig. 7) is abruptly overturned
and strongly deformed (Fig. 7). This north-directed thrust was first docu-
mented by Heim and Gansser (1939). It places a sequence of distinctive
conglomerate and interbedded sandstone layers (Kc in Fig. 7) atop the
Kailas conglomerate. The unit was named the Yiema Formation by Cheng

and Xu (1987) and contains dominantly purple and gray sandstone, an-
desitic volcanic breccias, and limestone that yields Cretaceous fossils
(Cheng and Xu, 1987; Table 1). The limestone and sandstone units were in-
ferred by Liu (1988) to be part of the Cretaceous Xigaze forearc deposits. A
second north-directed thrust (fault (b) in Fig. 7B) south of the frontal thrust
(not documented in Heim and Gansser, 1939) places a highly folded lime-
stone and calcareous schist unit (lm in Fig. 7) over the Cretaceous Yiema
Formation (Kc in Fig. 7). The age of the limestone unit is not known, but it
may be part of the Paleozoic–Mesozoic shallow-marine sedimentary se-
quence deposited on the northern Indian shelf prior to the Indo-Asian colli-
sion or part of the Cretaceous Xigaze forearc sequence. In any case, the dep-
ositional age of the unit likely predates the initial collision between India
and Asia. This complexly deformed limestone unit exhibits well-developed
south-dipping spaced cleavage in the limestone beds. Farther to the south,
the limestone unit is thrust over a purple sandstone unit (ss in Fig. 7) along
a north-dipping thrust (fault (d) in Fig. 7B). Both the limestone and sand-
stone units were underthrust beneath a north-directed thrust (fault (c) in
Fig. 7B) that carries a phyllitic schist unit (sch) in its hanging wall. The
hanging wall of this thrust (c) contains a shallow-dipping fault, which is
folded with a northward vergence. The uppermost fault in the study area
places serpentinite (oph) over both the phyllitic schist (sch), purple sand-
stone (ss), and locally the limestone (lm) units (Fig. 7). Both the age and
transport direction of this folded thrust are unknown.

The above crosscutting relationship indicates that at least two phases of
thrusting occurred in the Kailas area: the early event was south directed
whereas the younger event was north directed. Although the younger thrust-
ing is clearly Tertiary, as it cuts the Tertiary Kailas conglomerate (see dis-
cussion below), the age of the older event is not well constrained.

Age Constraints

Southeast Tibet (Zedong Area).Here, we briefly summarize the results
of a detailed thermochronologic and geochronologic investigation of the Ze-
dong area (see details in Harrison et al., in press). An upper bound for the ini-
tiation of slip along the Gangdese thrust is obtained from the crystallization
age of a hanging-wall granodiorite, dated by U-Pb ion microprobe measure-
ments on zircon at 30.4 ± 0.4 (Harrison et al., 1999). The intrusion is cut by
the Gangdese thrust and is affected by the same mylonitic fabric that charac-
terizes other hanging-wall rocks in close proximity to the fault (see Fig. 3,
cross section C–C′, for location). Hornblendes extracted from the same in-
trusion yield similar 40Ar/39Ar ages. It is interesting that emplacement of this
granodiorite occurred ~10–15 m.y. after the last recognized phase of igneous
activity within the Gangdese batholith (e.g., TBGMR, 1982; Schärer and
Allègre, 1984; Coulon et al., 1986; Copeland et al., 1995, Pan, 1993).

Thermochronometry along traverses west of cross section E–E′ in Figure
3 that vary from 0.5 to 1 km in vertical component are consistent with thrust-
related cooling beginning at ca. 28 Ma and continuing until 24 Ma (Harrison
et al., 1999). In contrast, K-feldspar samples positioned east of cross section
E–E′ exhibit broader age gradients with minimum ages as young as 8 Ma.
These age systematics strongly resemble those exhibited by the Gangdese
granitoids overthrust by the Renbu-Zedong thrust east of Lang Xian (Fig. 2;
Quidelleur et al., 1997). For Gangdese batholith samples in the easternmost
part of Figure 3, minimum K-feldspar ages decrease to the southeast. Differ-
ential tectonic loading produced by greater overthrusting of the Renbu-
Zedong thrust toward the east, coupled with synthrust deformation of the
Renbu-Zedong thrust footwall, may have promoted greater outgassing of
eastern samples during middle Miocene to late Miocene time relative to
western samples that resided at shallower depths (Harrison et al., 1999). The
Gangdese thrust is buried beneath the Renbu-Zedong thrust hanging wall just
west of the region mapped in Figure 3, reproducing the geologic relationship
observed east of Lang Xian (Fig. 2; Quidelleur et al., 1997).

Figure 8. 40Ar/ 39Ar isochron for hornblende from Kailas intrusive
complex, sample 95-6-11(3).
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West of the Zedong window at Quxu and Samye, we also see evidence of
rapid cooling beginning at ca. 27 Ma (Copeland et al., 1995) that likewise
appears related to displacement along the Gangdese thrust. Although the af-
fected rocks occur immediately north of, and structurally beneath the
Renbu-Zedong thrust, the observed pattern of cooling (i.e., rapid refrigera-
tion and/or denudation of footwall rocks proximal to the Renbu-Zedong
thrust) is opposite to the reheating effects expected if overthrusting of the
Renbu-Zedong thrust had been significant. The timing of displacement

along the Gangdese thrust determined from these constraints (Copeland et al.,
1995) is broadly consistent with Oligocene deposition of the Luobusha
Group in its footwall (Yu and Zheng, 1979).

The timing of displacement of the Renbu-Zedong thrust is constrained
in the Lang Xian area east of the mapped area in this study (Fig. 2).
Quidelleur et al. (1997) analyzed samples collected from a northeast-
southwest traverse in the footwall of the Renbu-Zedong thrust by using
40Ar/39Ar and U-Pb techniques. They identified a significant thermal dis-

TABLE 2

Step T t 40Ar/39Ar 37Ar/39Ar 36Ar/39Ar 39Ar Σ39Ar 40Ar* Age ± 1σ
(°C) (min) (mol) (%) (%) (Ma)

95-6-11(3) Hornb lende (J = 0.00866) Total gas a ge = 46.19 ± 1.17 Ma

1 800 17 10.26 1.23 2.66 × 10–2 3.06 × 10–14 13.3 24.1 38.3 ± 0.6
2 950 21 6.207 9.31 1.31 × 10–2 4.40 × 10–14 32.4 48.3 46.5 ± 0.3
3 980 12 6.326 19.8 1.58 × 10–2 2.14 × 10–14 41.6 48.8 48.2 ± 0.7
4 1010 11 6.174 18.6 1.59 × 10–2 1.80 × 10–14 49.4 45.2 43.6 ± 0.6
5 1030 12 8.074 14.2 2.23 × 10–2 8.62 × 10–15 53.2 31.1 39.2 ± 1.7
6 1060 10 8.635 11.3 2.36 × 10–2 8.25 × 10–15 56.7 28.5 38.4 ± 1.6
7 1120 18 8.306 13.2 2.24 × 10–2 1.97 × 10–14 65.3 31.8 41.2 ± 0.9
8 1180 10 7.884 19.1 2.19 × 10–2 2.19 × 10–14 74.8 35.3 43.5 ± 0.8
9 1250 12 7.525 12.4 1.93 × 10–2 4.10 × 10–14 92.5 36.0 42.2 ± 0.6
10 1350 13 24.12 13.7 7.57 × 10–2 1.735 × 10–14 100 11.4 42.8 ± 1.8

95-6-12(a) K-feldspar (J = 0.00866) Total gas a ge = 14.18 ± 0.37 Ma

1 450 12 28.63 2.26 × 10–2 8.95 × 10–2 2.19 × 10–14 0.952 7.5 33.3 ± 2.4
2 500 10 4.389 1.59 × 10–2 1.24 × 10–2 6.25 × 10–14 3.66 15.9 10.9 ± 0.2
3 500 18 1.385 1.41 × 10–2 2.76 × 10–3 4.21 × 10–14 5.49 39.5 8.5 ± 0.2
4 550 12 1.589 2.20 × 10–2 2.95 × 10–3 1.17 × 10–13 10.6 43.7 10.8 ± 0.1
5 550 37 1.109 3.68 × 10–2 1.48 × 10–3 9.52 × 10–14 14.7 58.6 10.1 ± 0.1
6 600 13 1.886 6.09 × 10–2 3.57 × 10–3 9.69 × 10–14 18.9 43.0 12.6 ± 0.1
7 600 15 1.138 7.20 × 10–2 1.49 × 10–3 4.84 × 10–14 21.0 59.5 10.6 ± 0.2
8 650 12 1.829 5.47 × 10–2 3.33 × 10–3 8.48 × 10–14 24.7 45.0 12.8 ± 0.1
9 650 30 1.275 3.75 × 10–2 1.91 × 10–3 6.51 × 10–14 27.5 54.0 10.7 ± 0.2
10 700 18 1.378 1.70 × 10–2 2.11 × 10–3 6.16 × 10–14 30.2 52.9 11.4 ± 0.2
11 700 31 1.769 1.25 × 10–2 3.51 × 10–3 4.08 × 10–14 31.9 40.1 11.0 ± 0.3
12 750 13 1.752 1.62 × 10–2 3.39 × 10–3 3.30 × 10–14 33.4 41.5 11.3 ± 0.3
13 750 23 2.110 1.50 × 10–2 4.54 × 10–3 2.80 × 10–14 34.6 35.4 11.6 ± 0.4
14 800 10 1.938 3.90 × 10–2 3.89 × 10–3 2.37 × 10–14 35.6 39.5 11.9 ± 0.5
15 850 14 1.875 6.14 × 10–2 3.58 × 10–3 6.34 × 10–14 38.4 42.6 12.4 ± 0.2
16 900 10 2.010 3.46 × 10–2 4.22 × 10–3 6.88 × 10–14 41.4 36.9 11.5 ± 0.2
17 950 9 2.001 3.86 × 10–2 3.96 × 10–3 1.07 × 10–13 46.0 40.4 12.6 ± 0.1
18 1000 12 2.068 2.57 × 10–2 4.01 × 10–3 2.10 × 10–13 55.1 41.6 13.4 ± 0.1
19 1050 13 2.285 3.83 × 10–2 4.45 × 10–3 2.38 × 10–13 65.4 41.5 14.8 ± 0.1
20 1100 17 3.000 3.87 × 10–2 6.37 × 10–3 2.85 × 10–13 77.8 36.6 17.1 ± 0.2
21 1125 16 3.388 3.04 × 10–2 7.63 × 10–3 2.20 × 10–13 87.4 32.8 17.3 ± 0.2
22 1150 11 3.644 2.32 × 10–2 8.52 × 10–3 1.32 × 10–13 93.1 30.3 17.2 ± 0.3
23 1175 16 6.753 3.38 × 10–2 1.90 × 10–2 8.27 × 10–14 96.7 16.4 17.2 ± 0.4
24 1200 11 13.15 4.09 × 10–2 4.11 × 10–2 2.66 × 10–14 97.9 7.4 15.0 ± 0.7
25 1225 20 8.809 3.78 × 10–2 2.52 × 10–2 1.39 × 10–14 98.5 15.3 20.9 ± 0.9
26 1250 13 15.24 3.66 × 10–2 4.83 × 10–2 1.09 × 10–14 98.9 6.2 14.7 ± 1.3
27 1350 19 21.50 3.74 × 10–2 6.72 × 10–2 2.43 × 10–14 100 7.5 25.0 ± 1.7

95-6-11(3) K-feldspar (J = 0.00866) Total gas a ge = 31.33 ± 0.26 Ma

1 450 24 101.8 3.98 × 10–2 2.89 × 10–1 5.98 × 10–15 0.21 16.1 239.5 ± 6.4
2 500 25 4.831 2.53 × 10–2 1.01 × 10–2 1.37 × 10–14 0.70 37.6 28.2 ± 0.8
3 500 20 3.234 2.70 × 10–2 5.91 × 10–3 4.95 × 10–15 0.88 45.3 22.7 ± 2.4
4 550 12 2.419 3.80 × 10–2 2.62 × 10–3 1.66 × 10–14 1.47 67.1 25.2 ± 0.7
5 550 17 2.213 4.12 × 10–2 2.25 × 10–3 1.36 × 10–14 1.96 68.9 23.7 ± 0.7
6 600 16 2.109 3.84 × 10–2 1.30 × 10–3 5.08 × 10–14 3.78 80.8 26.4 ± 0.2
7 600 56 2.057 2.60 × 10–2 1.40 × 10–3 7.58 × 10–14 6.49 78.8 25.2 ± 0.1
8 650 12 1.886 3.55 × 10–2 4.79 × 10–4 4.99 × 10–14 8.27 91.3 26.7 ± 0.2
9 700 11 1.961 3.45 × 10–2 4.04 × 10–4 1.15 × 10–13 12.38 92.8 28.2 ± 0.1
10 750 12 1.932 2.61 × 10–2 2.78 × 10–4 1.60 × 10–13 18.09 94.6 28.3 ± 0.1
11 800 13 1.935 2.31 × 10–2 2.54 × 10–4 1.41 × 10–13 23.12 94.9 28.5 ± 0.1
12 850 18 1.964 1.76 × 10–2 3.50 × 10–4 1.42 × 10–13 28.20 93.5 28.5 ± 0.1
13 900 10 2.055 1.58 × 10–2 6.47 × 10–4 9.25 × 10–14 31.51 89.5 28.5 ± 0.1
14 950 20 2.106 1.59 × 10–2 8.45 × 10–4 1.40 × 10–13 36.51 87.0 28.4 ± 0.1
15 1000 12 2.317 2.28 × 10–2 1.47 × 10–3 8.93 × 10–14 39.70 80.3 28.8 ± 0.1
16 1050 16 2.736 2.00 × 10–2 2.76 × 10–3 1.42 × 10–13 44.77 69.3 29.4 ± 0.1
17 1100 11 2.940 2.42 × 10–2 3.16 × 10–3 1.93 × 10–13 51.69 67.4 30.7 ± 0.2
18 1130 11 3.289 2.94 × 10–2 4.20 × 10–3 2.16 × 10–13 59.41 61.6 31.4 ± 0.1
19 1160 19 2.959 2.38 × 10–2 2.93 × 10–3 3.09 × 10–13 70.47 70.0 32.1 ± 0.1
20 1190 15 2.629 1.54 × 10–2 1.85 × 10–3 2.79 × 10–13 80.44 78.3 31.9 ± 0.1
21 1220 12 2.502 1.26 × 10–2 1.44 × 10–3 2.82 × 10–13 90.51 82.0 31.8 ± 0.1
22 1350 10 2.724 3.09 × 10–2 2.14 × 10–3 2.65 × 10–13 100.00 76.0 32.1 ± 0.1

*Radiogenic.
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turbance, which was attributed to emplacement of the Renbu-Zedong
thrust sheet. In particular,40Ar/39Ar ages of biotite and K-feldspar in-
crease systematically away from the trace of the Renbu-Zedong thrust,
from ca. 12 Ma in the south near the fault to ca. 60 Ma in the north away
from the fault. Detailed analysis of K-feldspar 40Ar/39Ar age spectra and
a thermal-model simulation on the effect of the emplacement history of
the Renbu-Zedong thrust sheet suggest that the thrust was active between
19 and 10 Ma.

Southwest Tibet (Kailas Area).Constraints on the age of the Kailas
thrust can be inferred from the age of the Kailas conglomerate and the age
of the Gangdese batholith in the area, which both predate the north-directed
thrusts in the Kailas region (Fig. 7). The Kailas igneous complex has been
dated by the Rb-Sr whole-rock method at 38.8 ± 1.3 Ma (Honegger et al.,
1982). To further understand the timing of the Kailas thrust, we have un-
dertaken 40Ar/39Ar dating on samples from the Kailas region using standard
methods (McDougall and Harrison, 1988). Detailed results are available on
the World Wide Web at oro.ess.ucla.edu. A sample of granite from the foot-
wall (95-6-11-3; Figs. 7B and 8) yields a hornblende age of 45.4 ± 1.2 Ma
(Table 2; Fig. 8). 40Ar/39Ar step-heating results for the coexisting K-feldspar
(Fig. 9) are interpreted in terms of the multi–diffusion domain model
(Lovera et al., 1989) to determine the thermal-history content of the age
spectrum. By using recently outlined methods (Harrison et al., 1994; Lovera

et al., 1997; Quidelleur et al., 1997), a good fit to the age spectrum (Fig. 9A),
Arrhenius plot (Fig. 9B), and log(r/r0) plot (Fig. 9C) were obtained. The re-
sulting thermal history and 90% confidence limits are shown in Figure 9D.
Together with the coexisting 40Ar/39Ar hornblende age, the results indicate
emplacement of the granodiorite at an ambient temperature of ~400 °C at
ca. 45 Ma. At 30 Ma, a phase of rapid cooling began that lasted about 5 m.y.
(Table 2; Fig. 9D). We infer this rapid cooling episode to be due to slip on a
structure equivalent to the Gangdese thrust that had the effect of refrigerat-
ing the hanging-wall granitoid.

Until recently, age assessment of the Kailas conglomerate (late Eocene
to Miocene?) has been problematic (Gansser, 1964). By using ther-
mochronometry to establish an upper limit for derivation from the
Gangdese basement and dating crosscutting dikes to constrain a lower
bound, the age of deposition of the Kailas conglomerate and its equivalent
along the Yalu River valley has been estimated at three locations in west-
ern, central, and eastern Tibet (Harrison et al., 1993; Ryerson et al., 1995).
At all three sites, the results are consistent with a late Oligocene–early
Miocene (30–17 Ma) age of deposition.

As described above, the upper part of the Kailas conglomerate consists of
cobbles of metamorphic schists, volcanic breccias, and purple and green
sandstones that are characteristic of the hanging wall of the South Kailas
thrust system. This stratigraphic relationship suggests that at least during the

Figure 9. 40Ar/ 39Ar step-heating results for K-feldspar from Kailas intrusive complex, sample 95-6-11(3): (A) age spectrum, (B) Arrhenius data,
(C) log(r/r0) plot, and (D) thermal history. Conf. int.—confidence interval.
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deposition of the uppermost part of the Kailas conglomerate, the South
Kailas thrust system was active. Thus, the depositional age of the Kailas
conglomerate broadly implies that the age of the South Kailas thrust system
is middle Miocene.

A constraint on the timing of backthrusting is provided by 40Ar/39Ar ther-
mochronologic results for a K-feldspar separate from a volcanic cobble in
the Kailas conglomerate, directly below the frontal thrust of the South
Kailas thrust system. In this case, a good fit to the age spectrum (Fig. 10A,
Table 2) was determined by assuming that the sample had undergone a ther-
mal event. A good model fit was obtained by assuming that a temperature
of ~350 °C was reached at 19 Ma and remained at that value until ca. 13 Ma
when cooling at a rate of ~60 °C/m.y. began (Fig. 10D). Although an
equally good fit could be obtained by assuming a slow cooling history (also
shown in Fig. 10D), the origin of this sample as a cobble within the footwall
of a thrust leads us to prefer the reheating interpretation in which the thermal
pulse reflects footwall heating during slip along the South Kailas thrust (see
Fig. 7B). Because the South Kailas thrust system is offset by the right-slip
Karakoram fault in Gar Valley (Cheng and Xu, 1987; Fig. 6), the thrust must
predate the Karakoram fault. Searle (1996b) inferred that movement on the
Karakoram fault was initiated at ca. 4 Ma, an estimate based on its total off-
set (<120 km) divided by its current slip rate (~30 mm/yr). If this age esti-

mate is correct, the activity of the South Kailas thrust is bracketed to be
younger than 20 Ma but older than 4 Ma. This age constraint on the Kailas
thrust implies that it is coeval with the activity along the Renbu-Zedong
thrust in southeast Tibet (Fig. 7B, sample 95-6-12(a)) (Quidelleur et al.,
1997) and development of the South Tibetan detachment system (Burchfiel
et al., 1992; Edwards and Harrison, 1997).

DISCUSSION

Cenozoic Structural Evolution of the Kailas Area

The suture zone in the Zedong and Kailas areas share key similarities in
structural relationships and timing of deformation. Both areas have a major
south-dipping thrust juxtaposing Tethyan strata on top of the Gangdese
batholith. The faults were active between 20 and 4 Ma in the Kailas area and
between 19 and 10 Ma in the Zedong–Lang Xian area. The footwalls of both
south-dipping thrusts have a conglomerate unit containing clasts that are
dominantly derived from the granitoids and wall rocks of the Gangdese
batholith. Moreover, the Gangdese basement adjacent to the two areas is
characterized by early Miocene rapid cooling (Harrison et al., 1992, 1993;
Copeland et al., 1995). The apparent lack of surface exposure of the

Figure 10. 40Ar/ 39Ar step-heating results for K-feldspar from a cobble of the Kailas conglomerate, sample 95-6-12(1a): (A) age spectrum show-
ing fit for reheating condition, (B) Arrhenius data, (C) log(r/r0) plot, and (D) thermal histories for monotonic cooling and reheating models.
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Gangdese thrust in the Kailas area leads us to consider possible alternative
explanations. If the thrust never developed in this area, then the absence of
the Xigaze forearc basin may be related to other causes such as displacement
along a large strike-slip fault (Peltzer and Tapponnier, 1988). Although base-
ment uplift adjacent to large-displacement strike-slip faults may occur
(Leloup et al., 1995), the lack of evidence for compatible deformation in the
Gangdese batholith does not argue strongly for this mechanism. A role for
normal faulting can be excluded on similar grounds. Therefore, although
field evidence for thrusting is lacking, the most likely explanation for local-
ized denudation of the Gangdese granite in the Kailas area is south-directed
thrusting that occurred along a fault now buried beneath the hanging wall of
the South Kailas thrust system. Such an interpretation is supported by the ex-
istence of a south-directed thrust in the Kailas area (fault (d) in Fig. 7B),
which could be part of the early south-directed thrust system. In addition, this
interpretation is also consistent with the presence of south-directed Tertiary
thrusts in the Shiquanhe area (~150 km northwest of Mount Kailas, Figs. 2
and 6), which cut Cretaceous and early Tertiary plutonic and volcanic rocks
(Fig. 6; Cheng and Xu, 1987; Liu et al., 1988; Matte et al., 1996). As the
14–12 Ma felsic volcanic rocks in the area immediately west and north of

Kailas are flat lying (Miller et al., 1996), the north-dipping Tertiary thrusts in
the Shiquanhe area are likely late Oligocene to early Miocene in age, a pe-
riod overlapping the age duration of the Gangdese thrust in southeast Tibet
but predating the activity of the South Kailas thrust system.

On the basis of the aforementioned geologic relationships and geochrono-
logical constraints, we propose a kinematic model for the tectonic develop-
ment of the South Kailas thrust system (Fig. 11). The reconstruction of the
Gurla Mandhata detachment system and the Karakoram fault system in
southwestern Tibet are based on studies of Yin et al. (1996), Murphy et al.
(1997), and Searle et al. (1996b).

Stage 1 (50–30 Ma) (Fig. 11A).A large ophiolitic complex, described
by Heim and Gansser (1939), was already emplaced over the Paleozoic-
Mesozoic Indian shelf sequence. Its exact age of emplacement is not
known. The future inferred Gangdese thrust was initiated in the southern
part of the Gangdese igneous belt.

Stage 2 (30–20 Ma) (Fig. 11B).Movement on the inferred Gangdese
thrust exposed rocks of the Gangdese batholith in the thrust hanging wall.
As its southward displacement increased, the thrust eventually placed the
Gangdese batholith over the Xigaze forearc strata. Synchronous with thrust-

Figure 11. Cenozoic geologic evolution of the Kailas region, depicted via schematic maps. (A) Stage 1 (50–30 Ma). A large ophiolitic complex,
described by Heim and Gansser (1939), had already been emplaced over the Paleozoic–Mesozoic Indian shelf sequence. The exact time of em-
placement is not known. The future inferred Gangdese thrust began forming in the southern part of the Gangdese igneous belt. (B) Stage 2
(30–20 Ma). Movement on the inferred Gangdese thrust exposed rocks of the Gangdese batholith in the thrust hanging wall. As its southward
displacement increased, the thrust eventually placed the Gangdese batholith over the Xigaze forearc strata. Synchronous with thrusting was the
deposition of both volcanic and granitic cobbles eroded from the hanging wall on top of the Xigaze forearc strata in the footwall. As a result of
southward movement of the Gangdese thrust sheet, the exposed width of the Xigaze forearc basin was reduced. The future south-dipping South
Kailas thrust system was initiated within both the Xigaze forearc strata (the northern thrust in the map) and the Paleozoic–Mesozoic Indian con-
tinental shelf strata (the southern thrust in the map). (C) Stage 3 (20–4 Ma). Movement along the Gangdese thrust ceased at ca. 20 Ma. The south-
dipping South Kailas thrust system became fully developed, which caused denudation of both the Xigaze forearc sedimentary sequence and the
Indian shelf deposits in the thrust system’s hanging wall. Sediments derived from both the hanging wall and the footwall of the thrust system con-
tributed to the deposition of the upper Kailas conglomerate that buried the older Gangdese thrust. A minor component of the sediments in the up-
per Kailas conglomerate was derived from the Gangdese batholith from the north. Movement along the South Kailas thrust system caused de-
formation in its hanging wall, which deformed the older thrust that was carrying the ophiolite.
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ing was the deposition of both volcanic and granitic cobbles eroded from the
hanging wall on top of the Xigaze forearc strata in the footwall. As a result
of southward movement of the Gangdese thrust sheet, the exposed width of
the Xigaze forearc basin is reduced. The future south-dipping South Kailas
thrust system was initiated within both the Xigaze forearc strata (the north-
ern thrust in Fig. 11b) and the Paleozoic-Mesozoic Indian continental shelf
strata (the southern thrust in Fig. 11b).

Stage 3 (20–4 Ma) (Fig. 11C).Movement along the Gangdese thrust
ceased at ca. 20 Ma. The south-dipping South Kailas thrust system became
fully developed, which caused denudation of both the Xigaze forearc sedi-
mentary sequence and the Indian shelf deposits in its hanging wall. Sediments
derived from both the hanging wall and the footwall of the thrust system con-
tributed to the deposition of the upper Kailas conglomerate that buried the
older Gangdese thrust. A minor component of the sediments in the upper
Kailas conglomerate was derived from the Gangdese batholith from the north.
Movement along the South Kailas thrust system caused deformation in its
hanging wall, which deformed the older thrust carrying the ophiolite.

Origin of the Gangdese and Great Counter Thrusts

The greatest puzzle arising from this and previous investigations is why
the Gangdese thrust, the earliest postcollisional crustal-thickening feature
documented in southern Tibet, developed at ca. 30 Ma, ~20–25 m.y. after
the initial collision between India and Asia (Le Fort, 1996). Similarly, why
were Tethyan strata thrust over the Gangdese batholith along the south-
dipping Great Counter thrust system subsequent to termination of the
Gangdese thrust? The last question is particularly important because the
Great Counter thrust system developed during the period in which the Main
Central thrust had already accommodated at least 100 km of slip (e.g.,
Schelling, 1992; Srivastava and Mitra, 1994; Lyon-Caen and Molnar, 1985;
Hauck et al., 1998). Why, then, did coeval thrusting take place within the
hinterland in contrast to the general pattern of progression of the Himalayan
thrusting toward the foreland during the early and middle Miocene?

Gangdese Thrust. An analysis of regional tectonic events suggests that
several major Tertiary fault systems in central Asia were initiated during the
Oligocene and thus may be kinematically linked. Sedimentologic, biostrati-
graphic, and magnetostratigraphic data from the western Kunlun Shan and
the Nan Shan (Fig. 1) suggest that Tertiary shortening began there between
30 and 26 Ma (Ye and Huang, 1990; Rumelhart et al., 1997; Wang and
Burchfiel, 1997). The southern margin of the Qaidam basin (Fig. 1) records
a major transition in depositional setting during the Oligocene suggestive of
an emerging topographic highstand, perhaps related to crustal shortening
(Hansen, 1997). The significant variation in thickness of the Oligocene
strata across the major Tertiary thrusts in southern Qaidam also suggests
that the time of initial crustal shortening occurred during the late Oligocene

(Hansen, 1997; Song and Wang, 1993; Gu, 1987). Although somewhat
younger, sedimentary records in conjunction with biostratigraphy (Ye and
Huang, 1990; Allen et al., 1991; Avouac et al., 1993; Yin et al., 1998), mag-
netostratigraphy (Craig, 1995; Yin et al., 1998), and apatite fission-track
ages (Hendrix et al., 1994) suggest that thrusting in the Chinese Tian Shan
began between 24 and 21 Ma (Yin et al., 1998; Craig, 1995).

The regional pattern of increased intensity of north-south shortening in
both the southern (Gangdese thrust) and northern parts (Kunlun and Nan
Shan) of the Tibetan Plateau and the Tian Shan suggests a change in stress
distribution throughout south-central Asia at this time. One possible expla-
nation for this widespread phenomenon is an increase in the compressive
deviatoric stress component in the north-south direction, which may have
been caused by (1) an increase in convergence rate between India and Asia,
(2) a decrease in convergence rate between the Eurasian and Pacific plates,
or (3) a change in convergence direction or magnitude of tractions across the
two plate boundaries (e.g., Kong et al., 1997).

The convergence history between Asia and India has been examined by
several workers (Patriat and Achache, 1984; Besse and Courtillot, 1988;
Dewey et al., 1989; Le Pichon et al., 1992; Northrup et al., 1995). Since 45
Ma, the convergence rate was relatively uniform at about 5 cm/yr (Dewey
et al., 1989). Similarly, the convergence rate between the Eurasian and Pa-
cific plates was relatively constant, although an ~20° counterclockwise ro-
tation in convergence direction between the two plates occurred in the
Oligocene (Engebretson et al., 1985). As shown by Kong et al. (1997), the
strain distribution in Asia could be very sensitive to small changes in trac-
tion on the Indo-Asian and Pacific-Asian convergent boundaries. It is pos-
sible that the change in convergence direction between Asia and the Pacific
at this time triggered a change in the plate-boundary tractions between Asia
and India and between Asia and the Pacific that in turn produced a strong
north-south compressive stress and shortening in central Asia.

In addition to the change in the regional stress condition that resulted in
initiation of the Gangdese thrust system, the local thermal regime may have
also influenced its development. As documented by Harrison et al. (in
press), magmatic input to the Gangdese batholith in southeastern Tibet con-
tinued until 30 Ma. This magmatism implies that the crust in the Gangdese
Shan may have remained relatively hotter compared to the regions to the
north immediately prior to the initiation of movement on the Gangdese
thrust. However, this interpretation does not explain why movement on the
Gangdese thrust did not begin earlier, as the region occupied by the
Gangdese batholith was likely anomalously hot, and thus weak, immedi-
ately after the closure of the Indus-Tsangpo suture zone.

Great Counter Thrust System along the Indus–Yalu River Valleys.
Activity along the Great Counter thrust system in the Tethyan Himalaya
suggests that it was coeval or overlapped in time with (1) slip on the South
Tibetan detachment system (Burchfiel et al., 1992; Edwards and Harrison,

Figure 12. Tectonic evolution of the Great Counter thrust system. (A) Stage 1 (30–20 Ma). It is possible that thrusting along the Main Central
thrust during its early phase of movement in the early Miocene–middle Miocene (Harrison et al., 1992; Hauck et al., 1998; cf. Hodges et al., 1994)
and north-south crustal shortening in the Tethyan Himalaya in late Eocene and early Oligocene time (Ratschbacher et al., 1994) produced a thick
crustal root in the northern Himalayan region and southern Tibet. In addition, it is possible that movement along the Gangdese thrust also pro-
duced a thick crustal root beneath the southernmost Lhasa block. (B) Stage 2 (20–10 Ma). Thermal relaxation of this thickened crust (England
and Thompson, 1984), shear heating along major thrusts (Molnar and England, 1990; Harrison et al., 1997a), muscovite-breakdown melting dur-
ing decompression (e.g., Searle et al., 1997a), or a combination of these processes may have caused thermal weakening and locally partial melting
of the crust in the Himalayan and southern Tibetan regions. As a consequence, a ductility contrast (i.e., strength contrast) was created between
the thickened and heated region in south Tibet in the middle and the cooler Lhasa block and India to the north and south, respectively. Under the
north-south compression, the plastic and more buoyant lower-crustal root in the Himalaya and southernmost Tibet may have been displaced both
upward and laterally. The inferred upward movement of the ductile lower-crustal root beneath southernmost Tibet may have been manifested by
the emplacement of North Himalayan gneiss domes and granites. The upward movement of the lower crust due to horizontal shortening may
have been accompanied by thrusting along the Main Central thrust and the development of the Great Counter thrust system.
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1997), (2) emplacement of the North Himalayan granites and gneiss domes
(Schärer and Allègre, 1986; Harrison et al., 1997a), and (3) slip on the Main
Boundary thrust (Burbank et al., 1996). In contrast to the Gangdese thrust,
which affects granitic basement, the Great Counter thrust system is a thin-
skinned thrust system, i.e., significant shortening in the thrust system was
accommodated by shortening of sedimentary cover rocks via folding or im-
bricate thrusting in its hanging wall. The imbricate style of such deforma-
tion is emphasized in the mapping of the central Tethyan Himalaya by
Ratschbacher et al. (1994). Intense folding in the hanging wall of the Great
Counter thrust system is also documented in this study in the Zedong area.

Tectonic Model

The occurrence of the contemporaneous crustal shortening in the Hi-
malaya and southern Tibet described above leads us to propose a kinematic
model for the development of the Main Central thrust, the Himalayan
leucogranites, South Tibet detachment fault, and the Great Counter thrust
system (Fig. 12). The model is based on geologic observations discussed in
this study and those presented by earlier workers (e.g., Schelling, 1992;
Ratschbacher et al., 1992; Harrison et al., 1992; Yin et al., 1994). The in-
ferred deep-crustal structure in the model is based on recent results of the
Project INDEPTH (Makovsky et al., 1996; Hauck et al., 1998; Alsdorf et al.,
1998) and the synthesis of seismological observations and interpretations of
the Tibetan Plateau of Owens and Zandt (1997).

Stage 1 (30–20 Ma) (Fig. 12A).Early Miocene to middle Miocene
movement of the Main Central thrust (Harrison et al., 1992, 1997b; Hauck
et al., 1998) and late Eocene–early Oligocene north-south crustal shorten-
ing in the Tethyan Himalaya (Ratschbacher et al., 1994) would produce a
thick crustal root in the northern Himalaya and southern Tibet. In addition,
movement along the Gangdese thrust may also have produced a thick
crustal root beneath the southernmost Lhasa block.

Stage 2 (20–10 Ma) (Fig. 12B).Thermal relaxation of this thickened
crust (England and Thompson, 1984), shear heating along major thrusts
(Molnar and England, 1990; Harrison et al., 1997b), decompression melt-
ing during normal faulting (e.g., Harris and Massey, 1994), or a combina-
tion of these processes may have caused thermal weakening of the lower
crust in the Himalayan and southern Tibetan regions. As a consequence, a
strength contrast would have been created between the thickened and heated
region of southern Tibet relative to India and the Lhasa block. Under the
north-south compression, the plastic and more buoyant lower-crustal root in
the Himalaya and southernmost Tibet may have been displaced both up-
ward and laterally.

The inferred upward movement of the ductile lower-crustal root beneath
southernmost Tibet may have been manifested by the emplacement of
North Himalayan gneiss domes and granites. The upward movement of the
lower crust due to horizontal shortening may have been accompanied by
thrusting along the Main Central thrust and the development of the Great
Counter thrust system.

This proposed mechanism is similar to that for the development of the
Mesozoic North American Cordilleran fold-and-thrust belt, where ductility
contrast between the magmatic arc to the west and the cratonal crust and its
cover strata to the east is considered to be the key controlling factor for its
formation (e.g., Burchfiel and Davis, 1975).

Structural Modification of the Indus-Tsangpo Suture Zone 
during the Indo-Asian Collision

Suture zones have been regarded as a diagnostic feature recording the
prior existence of an ocean between two collided continents (e.g., Dewey
and Burke, 1973). However, recognizing the existence of a suture zone may
be difficult because suture zones can be significantly modified during sub-

sequent deformation (see discussion by Ôengör and Natal’in, 1996). Our
study along one of the better-known suture zones provides some insight into
how these features can be modified during the course of continuing conti-
nental collision. Note that if the hanging wall of the Great Counter thrust
system had moved ~30–50 km farther to the north, a relatively modest
amount compared to the magnitude of thrusting in the Himalaya, no physi-
cal evidence of the suture would have been observable at the surface.

CONCLUSIONS

Geologic mapping and geochronological analysis in southwest Tibet
(Kailas area) and southeast Tibet (Zedong area) clearly document two epi-
sodes of crustal shortening along the classic Indus-Tsangpo “suture” in the
Yalu River valley. The older event occurred between ca. 30 Ma and 24 Ma
during movement along the north-dipping Gangdese thrust. The develop-
ment of the Gangdese thrust caused extensive, localized denudation of the
Gangdese batholith in its hanging wall and subduction of the Xigaze forearc
strata in its footwall in southeast and southwest Tibet. Examination of the
timing of major tectonic events in southern Asia suggests that the initiation
of the Gangdese thrust was coeval with the initiation and development of
major fault systems, such as the Nan Shan, the western Kunlun Shan, and
the Tian Shan thrust belts during the late Oligocene. Within this time inter-
val, the convergence direction between the Eurasian and Pacific plates
abruptly changed by about 20°. This change may have altered the force bal-
ance along the plate boundaries, which in turn could have intensified the
north-south compressive stress in central Asia. The younger north-south
shortening event along the south-dipping Great Counter thrust system oc-
curred between 19 Ma and 10 Ma along the Indus and Yalu River valleys in
southern Tibet. The coeval development of this thrust and the North Hima-
layan granite belt may reflect weakening of the Himalayan crust due to ei-
ther thermal relaxation of a thickened crust during the early phase of colli-
sion between India and Asia or shear heating along major thrusts.
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