## Structural evolution of the Arunachal Himalaya and implications for asymmetric development of the Himalayan orogen

# A. Yin<sup>1,\*</sup>, C. S. Dubey<sup>2</sup>, T. K. Kelty<sup>3</sup>, G. E. Gehrels<sup>4</sup>, C. Y. Chou<sup>1</sup>, M. Grove<sup>1</sup> and O. Lovera<sup>1</sup>

<sup>1</sup>Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095-1567, USA

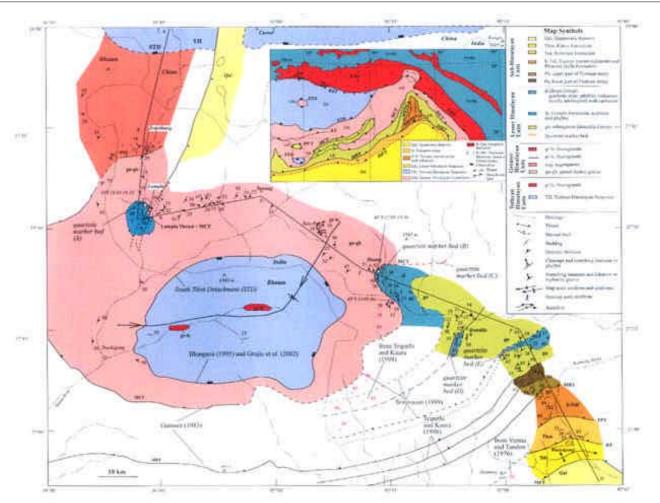
<sup>2</sup>Department of Geology, University of Delhi, Delhi 110 007, India

<sup>3</sup>Department of Geological Sciences, California State University, Long Beach, California 90840-3902, USA

<sup>4</sup>Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA

Geologic mapping and stratigraphic correlation of lowgrade Precambrian Lesser Himalayan units using U-Pb detrital zircon dating reveal the existence of a Main Central Thrust (MCT) window and a prominent ductile thrust zone within the Greater Himalayan Crystallines in the Arunachal Himalaya of NE India. The newly discovered MCT window is cut and offset by several active north-trending normal faults extending from southeast Tibet, indicating the fault is no longer active. Ion-microprobe dating of monazite inclusions in garnets from the MCT zone indicates that the fault was active at  $10.1 \pm 1.4$  Ma. Our structural data together with a synthesis of existing geologic maps suggest that the eastern Himalaya is composed of a large thrust duplex with the folded MCT as the roof fault. The total amount of crustal shortening accommodated by the duplex and the MCT south of the South Tibetan Detachment may exceed 500 km, which is probably greater than the amount of crustal shortening across the central Himalaya in Nepal and definitely greater than the amount of shortening across the western Himalaya in Pakistan. The observed systematic variation of crustal shortening suggests that Himalayan crustal thickening and uplift are uneven along strike, which may be in response to the westward decrease in convergence rate between India and Asia during the Cenozoic.

**Keywords:** Arunachal Himalaya, Himalayan orogen, Main Central Thrust, zircon dating.


THE Himalayan orogen was created by the Cenozoic Indo-Asian collision<sup>1</sup>. The geology of its western and central segments west of Bhutan is quite well known, due to extensive geologic investigations over the past several decades<sup>1-7</sup>. In the central Himalaya, the major faults (i.e. the Main Frontal Thrust, MFT; Main Boundary Thrust, MBT; Main Central Thrust, MCT, South Tibet Detachment, STD) juxtapose laterally continuous tectonostratigraphic units for over 1000 km (i.e. Greater Himalayan Crystalline Complex, GHC; Lesser Himalayan Sequence, LHS; Tethyan Himalayan Sequence, THS and the sub-Himalayan belt)<sup>8</sup>. In contrast, significant along-strike variation in lithology and metamorphic grades occurs in northern Pakistan and northwestern India of the western Himalaya, where the magnitude of crustal shortening is significantly less than that in the central Himalaya, as indicated by correlative lithologic units across major faults and change in metamorphic grades in both the hanging wall and footwall of the MCT along strike $^{9-12}$ . An obvious question from these first-order observations is whether the Himalayan orogen was constructed in the same manner along its whole length with a constant magnitude of crustal shortening or varies along strike of the orogen in response to a westward decrease in convergence rate between India and Asia<sup>13,14</sup>. In addition, it is important to know if the Himalayan orogen was constructed synchronously or diachronously along strike. We address these questions below by presenting newly obtained geologic and geochronological data from the Arunachal Himalaya of NE India.

#### Geology of the Arunachal Himalaya

The Arunachal Himalaya occupies the easternmost segment of the Himalaya between long. 91°30′E and 96°E, and includes the eastern Himalayan syntaxis (Figure 1). This segment of the Himalaya is located east of Bhutan, where Gansser<sup>15</sup> and Indian Geological Survey<sup>16</sup> have done extensive mapping. Geologic research in the Arunachal Himalaya can be traced back to the 19th century during which several reconnaissance investigations were conducted along its foothills<sup>17–20</sup>. The early research laid a foundation for a proliferation of geologic activities<sup>20–24</sup> in the early 1970s and subsequent regional syntheses by Thakur<sup>25</sup>, Singh and Chowdhary<sup>26</sup>, Acharyya<sup>27–29</sup>, and Kumar<sup>30</sup>, among others. These overviews establish general stratigraphy

<sup>\*</sup>For correspondence. (e-mail: yin@ess.ucla.edu)

CURRENT SCIENCE, VOL. 90, NO. 2, 25 JANUARY 2006



**Figure 1.** Tectonic sketch of the eastern Himalaya. Imbricate thrusts in Lesser Himalaya based on this study, STD klippe from Grujic *et al.*<sup>4</sup>, eastern-syntaxis geology from Ding *et al.*<sup>58</sup> and Geological Survey of India<sup>32</sup>, MCT and MBT traces from Singh and Chawdhary<sup>26</sup>, Tripathi and Kaura<sup>59</sup> and this study. The geology of southeast Tibet is from Yin and Harrison<sup>60</sup>. Attitude from Verma and Tandon<sup>22</sup>, and Tripathi and Kaura<sup>59</sup> are shown with red and brown numbers on the map. *Inset*, Geologic map of eastern Bhutan and western Arunachal Himalaya and location of cross-section shown in Figure 3. Traces of the STD and MCT and strikes and dips of bedding and foliation in eastern Bhutan are from refs 4, 15, 16. MFT, Main Frontal Thrust; BT, Bhalukpung Thrust; TFT, Tipi Thrust; MBT, Main Boundary Thrust; MCT, Main Central Thrust; ZT, Zimithang Thrust.

and tectonic framework of the region and place the major lithologic units in the context of the overall Himalayan tectonic framework<sup>21,22,26,27,30,31</sup>. Noticeably, past investigations in the region are almost entirely based on field studies without application of modern geochronology and quantitative structural analyses. As a result, the age of the major lithologic units are highly uncertain and we know almost nothing about the timing of exhumation of the region and the age of fault motion along major structures such as the MCT. For example, few igneous units in the Arunachal Himalaya have been dated radiometrically<sup>30</sup>. In addition, our understanding of the basic structural geology of the region remains incomplete. For example, even the basic geometry of the MCT has been portrayed differently either as a simple north-dipping fault or a folded thrust<sup>26,30,32</sup>. Below we describe our observations along a traverse across the westernmost Arunachal Himalaya and present new geochronologic data that provide general constraints on the age and correlation of the Lesser Himalayan sequence in the region and timing of motion on the MCT.

196

#### Structure and stratigraphy

The MFT as the contact between the Brahmaputra alluvium and the sub-Himalaya is concealed by vegetation and Holocene deposits along our traverse. Cenozoic strata in the hanging wall are broadly folded (Figures 1 and 2) and were assigned as the Plio-Pleistocene Kimin and Subansiri Formations<sup>26,30</sup>. The north-dipping Bhalukpong thrust observed in this study and the Tipi thrust<sup>26,27</sup> lie within the Tertiary strata. The Tipi thrust juxtaposes the Dafla Formation over the Kimin and Subansiri Formations. It strikes N45°E and dips 55°NW with down-dip striations. Acharyya<sup>27,29</sup> reported that Eocene marine strata and volcanics are distributed along the MBT and Tipi zones, tectonically juxtaposed either on the top or bottom of the Dafla Formation sandwiched between the two thrusts. He envisioned that the Eocene strata formed as thrust horses in a duplex system below the MBT. In Figures 1 and 2, we lump the Eocene and Dafla strata as a single unit.

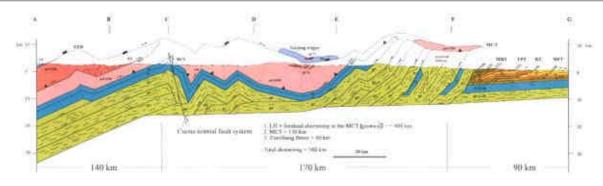



Figure 2. Geologic cross-section of western Arunachal Himalaya.

The MBT is not exposed, but its location is well determined. Its hanging-wall Permian and footwall Tertiary strata are isoclinally folded and sheared by mesoscopic thrusts. Locally bedding in Permian strata is completely transposed by axial cleavage. Acharyya *et al.*<sup>23</sup> divided the Permian strata into three units separated by thrusts. The threefold division was later simplified into two divisions by the Geological Survey of India<sup>32</sup> that is followed in our cross-section construction. Placing a thrust between the structurally upper and lower Permian units is consistent with our observations that the units have different attitudes across the inferred thrust (Figure 2).

The north-dipping Permian strata lie below augen gneiss interlayered with phyllite, quartzite, metavolcanics and carbonates, collectively known as the Bomdila Group (Figure 2)<sup>30</sup>. Mylonitic fabrics are widely developed in the gneiss, as reported by Verma and Tandon<sup>22</sup>. We are not aware of any other kinematic analysis of the mylonitic rocks. Our field observations consistently suggest that the north-trending stretching lineation has top-south sense of shear as indicated by S–C fabrics and asymmetric porphyroblasts. This kinematics is consistent with regional top-south Cenozoic thrusting such as along the MCT and MBT. This kinematic compatibility strongly suggests that the mylonitic shear zones within the Bomdila gneiss are Cenozoic in age, developed during the formation of the Lesser Himalayan thrust belt.

Structurally above the Bomdila Group is a sequence of phyllite and quartz arenite, locally interbedded with carbonate. They are commonly referred to as the Tenga Formation and Rupa Group<sup>30,33,34</sup>. A distinctive marker bed is present in this unit, namely the Miri Quartzite, which can be traced across the whole Arunachal Himalaya<sup>21,34,35</sup>. This marker bed is duplicated several times based on our own observations and those by Verma and Tandon<sup>22</sup> (Figure 1). The youngest age of the detrital zircons in the Rupa Group is about 950 Ma (see more detailed description below), suggesting that its deposition must have occurred after this time. The age of the Bomdila gneiss was dated by the whole-rock Rb/Sr isochron method from samples collected near Bomdila, which yielded  $1644 \pm 40$  Ma and  $1676 \pm 122$  Ma, respectively<sup>36</sup>. Later geochronological analysis of the Bomdila augen gneiss by Dikshitulu et al.<sup>37</sup> using the Rb/Sr method with a six-point isochron indicates its age to be  $1914 \pm 23$  Ma. These authors also report a  $1536 \pm 60$  Ma Rb/Sr age for a high-Ca granite that intrudes into the dark grey phyllite. From the above age constraints, we may conclude that there are at least four chronologic units in the Arunachal Lesser Himalayan Sequence; two are igneous and two metasedimentary. The oldest rock could either be the 1914 Ma gneiss or the metasedimentary sequence that is intruded by the ~1530 Ma granite. The ~1530 Ma granite may be produced by a protracted igneous event lasting from ~ 1676 to 1530 Ma and be part of the main body of the Bomdila gneiss complex. The youngest nonfossiliferous Lesser Himalayan unit is the Rupa Group, which must be younger than 950 Ma as constrained by our detrital zircon ages. Because of a large age gap between the Bomdila gneiss and the Rupa Group, we suggest that the latter was deposited unconformably on top of the Bomdila gneiss. As shown below, the detrital zircon ages from the Rupa Group are clustered at ~1400 and 1700 Ma, respectively. These ages are broadly compatible with those from the Bomdila gneiss and may further suggest that the Bomdila gneiss is the basement and source of the detrital zircons for the Rupa Group.

The MCT near Dirang juxtaposes garnet-bearing gneiss and kyanite-bearing schist over phyllite, quartzite and metavolcanic rocks. The fault zone is ~100-300 m thick and consists of mesoscopic folds trending N5°W to N45°W and verging to both southwest and northeast. As the folds are subparallel to striations dominantly trending N10-20°W in the MCT zone, the fold hinges may have been rotated into sub-parallelism to the thrust transport direction during shear along the MCT. Although we observed no mylonitic shear zones associated with the MCT, a weak stretching lineation trending about N5-15°W is locally present in phyllite below the thrust. From the MCT zone upward, the number and size of deformed and undeformed leucogranites increase. At the base of the MCT hanging wall, the leucogranites are less than tens of centimetre thick and a few metres long. However, at higher levels near Se La pass (Figure 1), they increase to 20-40 m thick and >100 m long. Associated with the large quantity

of leucogranites near Se La pass is the appearance of sillimanite, indicating upward increase in metamorphic grade.

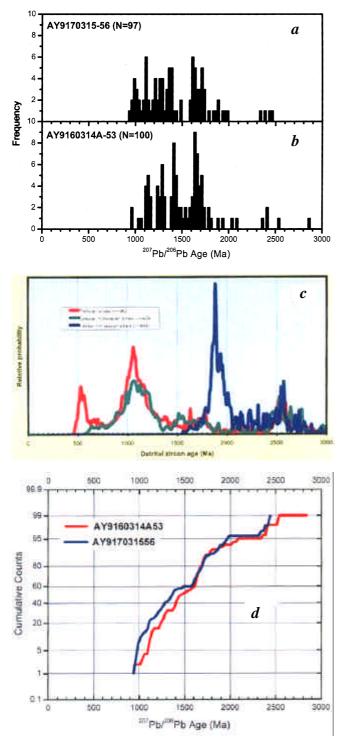
We mapped a warped, low-angle fault near Lumla between Tawang and Zhimithang, which we term as the Lumla thrust. This fault places high-grade garnet-biotite gneiss over low-grade phyllite and quartz arenite (Figure 1). The latter is similar to phyllite and quartz arenite of the Rupa unit we observed to the south in the footwall of the MCT. The fault has a 1-3 m thick gouge zone, with stretching lineation trending N30-50°W in footwall phyllite. Southeast-verging folds are present below the fault with hinges trending between N30°E/S30°W and N75°E/S75°W. These observations indicate a top-southeast sense shear on the Lumla thrust. According to Kumar<sup>30</sup> and the Arunachal geologic map, phyllite and arenite near Lumla belong to the basal part of the Tethyan Himalayan Sequence (THS) that rests unconformably on top of the Greater Himalayan Crystalline Complex (GHC). This interpretation is inconsistent with our field observations that the high-grade rocks are juxtaposed against low-grade rocks. The Lumla thrust is offset between 5 and 200 m by several northstriking normal faults (Figure 1).

The LHS strata in Lumla could either be an embayment of a half window or a full window of the MCT. Due to the difficult access around Lumla, we were not able to trace the fault and the interpreted Rupa strata laterally. However, our preliminary interpretation of the available LANDSAT image and extrapolation of the known trace of the MCT in Bhutan led us to interpret that the occurrence of the LHS in Lumla results from the presence of an MCT window, which we refer to as the Lumla window. This hypothesis needs to be tested by future field mapping.

Our mapping also reveals a north-dipping mylonitic thrust shear zone (>150 m thick) near Zimithang in the GHC, that we term here as the Zimithang thrust (Figure 1). The shear zone places augen gneiss over garnet–biotite quartzo-feldspathic gneiss. Stretching lineation in the zone trends between N10°E and N45°W. The presence of this shear zone indicates significant internal shortening within the GHC by thrusting. From the location of the Zimithang shear zone, we correlate it to the north-dipping Kakhtang thrust in eastern Bhutan<sup>4,15</sup>, which is also a prominent ductile thrust in the GHC.

#### U-Pb detrital zircon dating

The hanging-wall and footwall units across the Lumla thrust are remarkably similar to those across the frontal trace of the MCT near Dirang, raising the possibility that the Lumla thrust is a tectonic window of the MCT. To test this hypothesis and to determine whether the Lumla phyllite and arsenite belong to the THS, we conducted U–Pb dating of detrital zircons from two arsenite samples collected at Lumla and Dirang (AY 9.16.03.14-53 and


AY 9.17.03.15-56 in Figure 1). The analyses were preformed by laser-ablation-ICPMS at University of Arizona. We dated 97 and 100 zircon grains respectively, for the two samples, both yielding similar <sup>207</sup>Pb/<sup>206</sup>Pb age distributions ranging from ~950 to ~2960 Ma (Figure 3 a and b; Table 1). For both samples there are two prominent age clusters at 1400 and 1700 Ma, which are different from typical detrital zircon ages of the THS but similar to those from the LH determined in Nepal<sup>38,39</sup> (Figure 3 c). We also compare the two age distributions by plotting cumulative counts against the  ${}^{207}$ Pb/ ${}^{206}$ Pb age (Figure 3*d*), which again shows remarkable similarities between the two samples. To make the comparison statistically rigorous, we performed Kolmogorov-Smirnov analysis<sup>40</sup>. The results indicate that the distributions are distinguishable only at 60% confidence interval (30% confidence level for error-weighted analyses). Hence the null hypothesis cannot be disproved at a statistically significant level (i.e. 95% confidence level) and the two samples may very well come from the same source region.

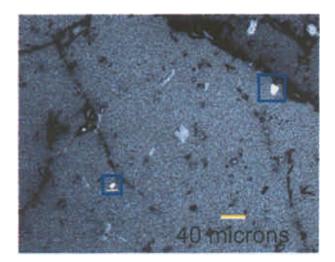
#### Timing of motion on the Main Central Thrust

In order to determine the age of the MCT, we performed U-Th ion-microprobe dating of monazite inclusions in garnet from the MCT zone. The general analytical procedures are as follows. Monazite grains in polished thin sections from rock samples were located using backscattered electron (BSE) petrography (Figure 4) and energydispersive X-ray spectroscopy with a scanning electron microscope or an electron microprobe at UCLA. Monazites found in the matrices of rocks were not used to obtain ages. Only monazites in garnets were used in the in situ Th-Pb dating method. Monazite crystals were found to vary in size from 5 to 20 µm. Monazite grains in garnet were documented with detailed BSE images. The portion of the thin section that contained monazite grains and surrounding garnet was precisely cut using a precision table saw and mounted in epoxy with a minimum of ten grains of polished monazite age standards (monazite 554, see Harrison et al.<sup>41</sup>). A digital camera attached to an optical microscope was used to take reflected light images of the garnets that contain monazite grains so as to aid relocating the grains during ion microprobe sessions. Before probe sessions, the mounted epoxy samples were cleaned in soapy water, then distilled water and high-purity ultrasound cleanser. Later the samples were gold-coated.

Monazite grains were analysed using a CAMECA ims 1270 ion microprobe. The dating method takes advantage of the kinetic energy distribution of the Th and Pb ions sputtered from monazite using a primary oxygen ( $O^-$ ) beam focused to a spot size that varied from ~5 to 30 µm in diameter. Greater the diameter, greater are the chances of detecting the *in situ* monazite grains during initial relocating of the grains on the samples. However, due to the

small sizes of the grains from Arunachal Pradesh, in our sessions we chose the beam diameter to be at 15  $\mu m$  (see




**Figure 3.** *a*, Frequency diagram of  $^{207}$ Pb/ $^{206}$ Pb detrital zircon ages for sample AY9170315-56. See Figure 1 *b* for sample location. *b*, Frequency diagram of  $^{207}$ Pb/ $^{206}$ Pb detrital zircon ages for sample AY9170314A-53. See Figure 1 *b* for sample location. *c*, Comparison curves of detrital zircon ages from the Lesser Himalaya, Greater Himalaya, and Tethyan strata in Nepal<sup>61</sup>. *d*, Cumulative probability plots of age distribution for samples AY9170315-56 and AY9170314A-53.

Harrison *et al.*<sup>41,42</sup> for details). The primary beam varied from 5 to 15 nA. A 50 eV energy window and an ~10 eV offset for Th<sup>+</sup> was used. The mass resolving power of the ion microprobe set at ~6000 allows all Th and Pb isotopes to be resolved from any other molecular interference. The O-beam sputtered less than a micron of the grain surface and the monazite grain of interest was located by the beam quickly. Each grain analysis was scheduled for ten runs and the whole procedure was completed in minutes. The uncertainty in the Th–Pb monazite ages reported here is limited by the reproduction of a calibration curve and is  $\pm 1-2\%$ .

The sample we analysed (AY91403-(8a)) was collected directly above the MCT near Dirang (Figure 1). U–Th ionmicroprobe analysis of monazite inclusions yields an age of  $10 \pm 1.4$  Ma (1 s) from five monazite grains included in four different syn-kinematic garnets (Figure 3). This age is slightly older than the U–Th monazite inclusion ages of ~7–3 Ma in central Nepal<sup>43,44</sup>. Since the monazites in this study are included in garnets and unlikely to experience high temperature (>650°C) conditions for an extended period, the interpretation that they experienced large amounts of <sup>208</sup>Pb diffusional loss is improbable. Therefore, an age of ~10 Ma from these monazites in the MCT hanging wall records crystallization ages and suggests that the MCT was active in the late Miocene.

#### Magnitude of crustal shortening

The magnitude of crustal shortening across the whole or parts of the Himalayan orogen has been estimated in northern Pakistan<sup>10,45</sup>, NW India<sup>46–48</sup>, south-central Tibet<sup>49,50</sup>, and



sample AY 91403-(8a) weighted mean age =  $10.1 \pm 1.4$  Ma MSWD = 0.06

**Figure 4.** Back-scattered electron image of dated monazite inclusions in garnet from sample AY91403-(8a) from the MCT zone. See Figure 1 *b* for location.

CURRENT SCIENCE, VOL. 90, NO. 2, 25 JANUARY 2006

Nepal<sup>3,51</sup> using balanced cross-sections. However, few such attempts have been made in the Arunachal Himalaya. Those who made balanced sections, focused their analysis exclusively on structures in the sub-Himalayan belt between the MBT in the north and the MFT zone in the south<sup>27,29</sup>. The existing balanced cross-section of Acharyya<sup>27</sup> in the Arunachal Himalaya implies ~30 km of shortening in the MBT footwall.

Following the early approaches in other parts of the Himalaya<sup>3,47,48,50</sup>, we constructed a balanced cross-section across the westernmost Arunachal Himalaya by assuming kink-bend folding and constant bed thickness (Figure 2). Although this method produces folds with sharp hinges, it can also generate folds with circular hinge zones if the dip domains are close to one another as done in many cases of constructed balanced cross-sections<sup>52</sup>. One could easily smoothen the faults and contacts we draw in the cross section and make the fold hinges more rounded. We decided not to do this to allow the readers to directly evaluate our construction without introducing any arbitrary constructions. Also, as more field measurements are available, more realistic and detailed cross-sections can be constructed.

The most fundamental constraints on our cross-section are (1) surface geology (e.g. attitudes of beds, location of faults, etc.) we surveyed from Bhalukpong to Zhimithang (Figure 1), (2) thickness of the stratigraphic units determined from field mapping and (3) a regional dip of  $3.5^{\circ}$ of Indian basement beneath the Arunachal Himalaya as constrained by regional gravity data and modelling<sup>53</sup>. In our cross-section, the MBT has a relatively steep angle, which is inferred from the steeply dipping bedding attitudes immediately above the fault. Acharyya<sup>27</sup> has long advocated that the MBT is a flat-lying but folded thrust with a large magnitude of displacement. This is certainly a possibility, but implementing this type of geometry in our cross-section would violate measured bedding attitudes, assuming no out-of-sequence thrusting has occurred across the MBT zone. Without further constraints on deep crustal geometry of the MBT, we adopt a relatively simple geometry of the MBT as portrayed in our section that is permissible by all available geological data (Figure 2).

In our cross-section we project the STD and MCT mapped to the west and east of our field area onto our cross-section<sup>4,26</sup> (Figures 1 and 4). We also corrected the apparent line length with respect to the thrust transport direction of S30°E and obtained a total amount of short-ening exceeding 585 km across our traverse using the line-balance method<sup>54</sup>. This shortening is distributed by >195 km motion on the MCT, ~310 km thrusting and folding in the LH, ~90 km thrusting in the Permian and Cenozoic strata, and >50 km motion on the Zimithang Thrust. Note that although the Bomdila gneiss is shown as a one continuous unit in our cross-section, it should be regarded as a composite unit that includes the Bomdila gneiss and its interlayered metasedimentary units as seen in Bhutan for the equivalent rocks<sup>15</sup>.

The main uncertainty of our line-balance calculations comes from that of the Lesser Himalaya. First, the available structural data in this domain remain sparse. Second, the assumption that thrust-related folding in this unit is accommodated by flexural slip in the Lesser Himalaya is questionable because the Bomdila gneiss and its interlayered metasedimentary strata are folded at least at outcrop scale by ductile shearing and isoclinal folding. Third, it remains unclear whether repetition of marker beds in the Lesser Himalaya<sup>22,52</sup> was caused by folding or imbricate thrusting. To resolve these problems, we adopted an alternative area-balance method<sup>55</sup>, in which we use our own field observations to constrain the thickness of the Bomdila (~3.5 km) and Rupa (~3.2 km) Groups. We again assume that the basal decollement beneath the western Arunachal Himalaya dips 3.5° to the north, as inferred from regional gravity data<sup>53</sup>. Finally we assume that the MCT exhibits the geometry as portrayed in Figure 4. Using this method, we obtained a total amount of 279 km shortening in the Lesser Himalayan belt, which is about 30 km less than that of 310 km estimated by line balancing. This minor difference can be attributed to the lack of a steep ramp in the northernmost part of the section in our area-balancing calculation. Our estimated total shortening using area balancing in the LH is likely to be a minimum because the estimated thicknesses of the Bomdila and Rupa Groups represent their upper bounds due to distributed thickening by internal folding and thrusting.

#### Discussion

The minimum crustal shortening estimated in the central Himalaya ranges from 185 to 245 km in eastern Nepal<sup>51</sup> and 418 to 493 km in western Nepal<sup>3</sup>. These do not include shortening in the Tethyan Himalaya above the STD. Farther west in northern Pakistan, DiPietro and Pogue<sup>10</sup> estimated shortening across the westernmost Himalaya to be ~200 km and suggested a westward decrease in contraction from the central Himalaya compared to the estimates in Nepal<sup>3,50,51</sup>. Although our estimated minimum crustal shortening is significantly greater than that estimated from the western Himalaya, comparing our estimates against those from the Nepal Himalaya requires qualification, because both estimates are minimum values. The main cause of the lower-bound estimates in Nepal and our study area is due to erosion of hanging-wall cut-offs. If this is the case, then we may partition the total amount of shortening (TS) into two terms: the minimum amount of shortening estimated from balanced cross-sections (MS) and missing shortening by erosion of the hangingwall cut-offs (HMC). That is,

$$TS = MS + EHWC.$$
(1)

We could make meaningful comparison of the total amount of shortening between the central and eastern Himalaya,

|                              |         |                    |            |                     | Table 1.      | U–Pb geo            | chronolo       | gic analy         | yses               |          |                     |          |                     |          |                 |
|------------------------------|---------|--------------------|------------|---------------------|---------------|---------------------|----------------|-------------------|--------------------|----------|---------------------|----------|---------------------|----------|-----------------|
|                              |         |                    |            | Isotopic ratio      |               |                     | -              | Apparent age (Ma) |                    |          |                     |          |                     |          |                 |
|                              |         | <sup>206</sup> Pb/ |            | <sup>207</sup> Pb*/ |               | <sup>206</sup> Pb*/ |                | - Error<br>corre- | <sup>206</sup> Pb* | /        | <sup>207</sup> Pb*/ |          | <sup>206</sup> Pb*/ | ,        | Percent concen- |
| Sample                       | U (ppm) | 204                | U/Th       | <sup>235</sup> U    | ±(%)          | <sup>238</sup> U    | ±(%)           | ction             | <sup>238</sup> U   | ± (Ma)   |                     | ± (Ma)   |                     |          |                 |
| AY9160314A                   |         |                    |            |                     |               |                     |                |                   |                    |          |                     |          |                     |          |                 |
| AY9160314A-9                 | 3 364   | 22359              | 0.5        | 1.51645             | 3.07          | 0.15404             | 1.99           | 0.65              | 924                | 17       | 937                 | 19       | 969                 | 24       | 95              |
| AY9160314A-2                 |         | 8597               | 6.3        | 1.52597             | 6.99          | 0.15468             | 6.46           | 0.92              | 927                | 56       | 941                 | 42       | 973                 | 27       | 95              |
| AY9160314A-9                 |         | 7491               | 1.3        | 1.64513             | 5.55          | 0.16067             | 3.67           | 0.66              | 961                | 33       | 988                 | 34       | 1049                | 42       | 92              |
| AY9160314A-9                 |         | 9006               | 0.9        | 1.67716             | 5.44          | 0.16239             | 4.94           | 0.91              | 970                | 44       | 1000                | 34       | 1066                | 23       | 91              |
| AY9160314A-9<br>AY9160314A-2 |         | 23717<br>10650     | 1.4<br>0.9 | 1.78568<br>1.72261  | 4.40<br>3.90  | 0.16994<br>0.16369  | 3.55<br>2.05   | 0.81<br>0.53      | 1012<br>977        | 33<br>19 | 1040<br>1017        | 28<br>25 | 1101<br>1104        | 26<br>33 | 92<br>89        |
| AY9160314A-9                 |         | 4311               | 1.4        | 1.40066             | 5.67          | 0.13310             | 4.07           | 0.55              | 806                | 31       | 889                 | 33       | 1104                | 33       | 73              |
| AY9160314A-4                 |         | 17601              | 2.8        | 1.85665             | 5.06          | 0.17519             | 4.41           | 0.72              | 1041               | 42       | 1066                | 33       | 1118                | 25       | 93              |
| AY9160314A-3                 |         | 7383               | 1.9        | 1.87403             | 4.80          | 0.17607             | 2.12           | 0.44              | 1046               | 20       | 1072                | 31       | 1126                | 43       | 93              |
| AY9160314A-7                 |         | 10553              | 5.0        | 1.85133             | 2.77          | 0.17326             | 1.52           | 0.55              | 1030               | 15       | 1064                | 18       | 1134                | 23       | 91              |
| AY9160314A-7                 | 7 163   | 7511               | 2.7        | 1.96453             | 5.98          | 0.18373             | 4.30           | 0.72              | 1087               | 43       | 1103                | 40       | 1135                | 41       | 96              |
| AY9160314A-3                 | 472     | 11650              | 2.8        | 1.69827             | 3.72          | 0.15839             | 2.89           | 0.78              | 948                | 25       | 1008                | 24       | 1141                | 23       | 83              |
| AY9160314A-2                 | 3 158   | 11207              | 1.8        | 2.00470             | 5.16          | 0.18684             | 3.33           | 0.64              | 1104               | 34       | 1117                | 34       | 1142                | 39       | 97              |
| AY9160314A-8                 | 4 258   | 16571              | 7.1        | 1.88669             | 4.82          | 0.17509             | 3.09           | 0.64              | 1040               | 30       | 1076                | 32       | 1151                | 37       | 90              |
| AY9160314A-1                 |         | 3025               | 1.1        | 1.94167             | 7.92          | 0.17894             | 4.37           | 0.55              | 1061               | 43       | 1096                | 52       | 1165                | 65       | 91              |
| AY9160314A-8                 |         | 18663              | 0.4        | 1.94842             | 7.45          | 0.17911             | 7.29           | 0.98              | 1062               | 71       | 1098                | 49       | 1170                | 15       | 91              |
| AY9160314A-3                 |         | 23422              | 5.5        | 2.10058             | 5.44          | 0.18718             | 4.45           | 0.82              | 1106               | 45       | 1149                | 37       | 1231                | 31       | 90              |
| AY9160314A-8                 |         | 13425              | 6.5        | 1.72869             | 3.85          | 0.15314             | 1.94           | 0.50              | 919                | 17       | 1019                | 25       | 1242                | 33       | 74              |
| AY9160314A-3                 |         | 9668               | 3.8        | 2.24416             | 4.94          | 0.19872             | 3.64           | 0.74              | 1168               | 39       | 1195                | 34       | 1243                | 33       | 94              |
| AY9160314A-2                 |         | 8077               | 2.3        | 2.49089             | 3.43          | 0.21998             | 2.30           | 0.67              | 1282               | 27       | 1269                | 25       | 1248                | 25<br>20 | 103             |
| AY9160314A-3<br>AY9160314A-7 |         | 9605<br>11357      | 1.4<br>1.1 | 1.20827<br>2.23210  | 14.16<br>6.68 | 0.10663<br>0.19682  | 14.01<br>5.44  | 0.99<br>0.81      | 653<br>1158        | 86<br>57 | 804<br>1191         | 76<br>46 | 1250<br>1252        | 20<br>38 | 52<br>93        |
| AY9160314A-4                 |         | 16544              | 4.3        | 2.29797             | 5.16          | 0.20240             | 3.80           | 0.31              | 1188               | 41       | 1212                | 36       | 1252                | 34       | 95<br>95        |
| AY9160314A-5                 |         | 2996               | 3.3        | 1.18681             | 7.31          | 0.10321             | 3.73           | 0.51              | 633                | 22       | 795                 | 40       | 1278                | 61       | 50              |
| AY9160314A-6                 |         | 11679              | 5.8        | 2.54878             | 4.02          | 0.22167             | 3.40           | 0.85              | 1291               | 40       | 1286                | 29       | 1278                | 21       | 101             |
| AY9160314A-9                 |         | 25450              | 1.8        | 2.23985             | 2.60          | 0.19488             | 2.36           | 0.91              | 1148               | 25       | 1194                | 18       | 1278                | 11       | 90              |
| AY9160314A-6                 | 3 300   | 7863               | 5.0        | 2.36808             | 6.65          | 0.20590             | 2.61           | 0.39              | 1207               | 29       | 1233                | 46       | 1279                | 60       | 94              |
| AY9160314A-9                 | 2 110   | 10200              | 1.0        | 2.73863             | 4.77          | 0.23795             | 4.16           | 0.87              | 1376               | 51       | 1339                | 35       | 1280                | 23       | 108             |
| AY9160314A-8                 | 9 298   | 15701              | 4.3        | 2.59223             | 7.18          | 0.22335             | 6.85           | 0.95              | 1300               | 80       | 1298                | 51       | 1297                | 21       | 100             |
| AY9160314A-9                 | 1 206   | 18293              | 1.6        | 2.74228             | 4.61          | 0.23429             | 4.01           | 0.87              | 1357               | 49       | 1340                | 34       | 1313                | 22       | 103             |
| AY9160314A-7                 |         | 19213              | 3.1        | 2.43948             | 3.13          | 0.20817             | 2.56           | 0.82              | 1219               | 28       | 1254                | 22       | 1315                | 17       | 93              |
| AY9160314A-4                 |         | 13123              | 2.5        | 2.29046             | 4.81          | 0.19504             | 2.00           | 0.42              | 1149               | 21       | 1209                | 33       | 1319                | 42       | 87              |
| AY9160314A-1                 |         | 25452              | 3.5        | 2.77361             | 2.00          | 0.22886             | 1.63           | 0.81              | 1329               | 20       | 1349                | 15       | 1380                | 11       | 96              |
| AY9160314A-6                 |         | 2324               | 3.6        | 0.97286             | 13.83         | 0.07975             | 7.17           | 0.52              | 495                | 34       | 690                 | 67       | 1393                | 113      | 36              |
| AY9160314A-4                 |         | 22573              | 3.3        | 2.83727             | 3.29          | 0.23229             | 2.34           | 0.71              | 1347               | 28       | 1365                | 24       | 1395                | 22       | 97<br>04        |
| AY9160314A-3<br>AY9160314A-8 |         | 11303<br>8163      | 3.1<br>2.7 | 2.80730<br>2.39138  | 3.21<br>4.35  | 0.22818<br>0.19431  | 2.77<br>3.91   | 0.86<br>0.90      | 1325<br>1145       | 33<br>41 | 1358<br>1240        | 24<br>31 | 1409<br>1410        | 15<br>18 | 94<br>81        |
| AY9160314A-5                 |         | 9044               | 10.3       | 2.39138             | 4.35<br>3.47  | 0.20128             | 1.84           | 0.50              | 1145               | 20       | 1240                | 25       | 1413                | 28       | 84              |
| AY9160314A-2                 |         | 6627               | 2.0        | 3.11156             | 3.81          | 0.25243             | 1.95           | 0.55              | 1451               | 25       | 1436                | 29       | 1413                | 31       | 103             |
| AY9160314A-8                 |         | 12102              | 2.6        | 2.71852             | 3.25          | 0.21996             | 2.71           | 0.83              | 1282               | 31       | 1334                | 24       | 1418                | 17       | 90              |
| AY9160314A-2                 |         | 9569               | 1.0        | 2.85210             | 6.70          | 0.23055             | 5.44           | 0.81              | 1337               | 65       | 1369                | 49       | 1420                | 37       | 94              |
| AY9160314A-9                 |         | 16768              | 1.9        | 2.64645             | 2.66          | 0.21373             | 2.22           | 0.84              | 1249               | 25       | 1314                | 19       | 1421                | 14       | 88              |
| AY9160314A-7                 | 5 332   | 20505              | 3.7        | 2.18470             | 6.98          | 0.17638             | 2.50           | 0.36              | 1047               | 24       | 1176                | 48       | 1422                | 62       | 74              |
| AY9160314A-5                 | 4 197   | 17013              | 5.4        | 2.92290             | 2.52          | 0.23431             | 1.24           | 0.49              | 1357               | 15       | 1388                | 19       | 1436                | 21       | 94              |
| AY9160314A-4                 |         | 4145               | 0.5        | 2.32343             | 5.04          | 0.18605             | 2.22           | 0.44              | 1100               | 22       | 1220                | 35       | 1438                | 43       | 76              |
| AY9160314A-4                 |         | 2735               | 2.2        | 1.65264             | 6.48          | 0.13196             | 4.03           | 0.62              | 799                | 30       | 991                 | 40       | 1443                | 48       | 55              |
| AY9160314A-1                 |         | 8312               | 2.7        | 3.06753             | 3.63          | 0.24499             | 1.65           | 0.45              | 1413               | 21       | 1425                | 27       | 1443                | 31       | 98              |
| AY9160314A-1                 |         | 16374              | 1.5        | 2.99537             | 5.62          | 0.23876             | 4.98           | 0.89              | 1380               | 62<br>40 | 1406                | 42       | 1446                | 25       | 95<br>76        |
| AY9160314A-8                 |         | 7093               | 1.2        | 2.38783             | 5.64<br>5.56  | 0.18839             | 3.88           | 0.69              | 1113               | 40<br>63 | 1239                | 40       | 1466                | 39<br>20 | 76<br>03        |
| AY9160314A-6                 |         | 13361              | 2.5        | 3.01039             | 5.56          | 0.23675             | 5.13           | 0.92              | 1370               | 63<br>10 | 1410                | 42       | 1472<br>1477        | 20<br>18 | 93<br>93        |
| AY9160314A-2<br>AY9160314A-9 |         | 15016<br>16356     | 1.4<br>1.5 | 3.03097<br>2.92603  | 2.04<br>2.97  | 0.23773<br>0.22917  | $0.84 \\ 2.29$ | 0.41<br>0.77      | 1375<br>1330       | 10<br>28 | 1415<br>1389        | 16<br>22 | 1477<br>1480        | 18<br>18 | 93<br>90        |
| AY9160314A-9                 |         | 7446               | 0.3        | 1.35800             | 7.72          | 0.22917             | 7.26           | 0.77              | 643                | 28<br>44 | 871                 | 44       | 1480                | 25       | 90<br>43        |
| AY9160314A-2                 |         | 10990              | 1.3        | 3.48515             | 5.38          | 0.26581             | 2.65           | 0.94              | 1520               | 36       | 1524                | 42       | 1530                | 44       | 43<br>99        |
| AY9160314A-9                 |         | 9798               | 1.5        | 2.51966             | 4.87          | 0.19025             | 3.92           | 0.49              | 1123               | 40       | 1278                | 35       | 1549                | 27       | 72              |
| AY9160314A-7                 |         | 10554              | 4.9        | 2.65624             | 8.74          | 0.19854             | 8.33           | 0.95              | 1168               | 88       | 1316                | 63       | 1568                | 25       | 74              |
| AY9160314A-4                 |         | 12155              | 1.7        | 3.05531             | 4.13          | 0.22749             | 3.28           | 0.79              | 1321               | 39       | 1422                | 31       | 1575                | 24       | 84              |
|                              |         |                    |            |                     |               |                     |                |                   |                    |          |                     |          |                     |          | (0)             |

Table 1.(Contd...)

|                          |              |            |                                         |            | Isotopic ratio                          |              |                                         |              | г                          | Apparent age (Ma)                      |             |                                         |          |                                           |          |                              |
|--------------------------|--------------|------------|-----------------------------------------|------------|-----------------------------------------|--------------|-----------------------------------------|--------------|----------------------------|----------------------------------------|-------------|-----------------------------------------|----------|-------------------------------------------|----------|------------------------------|
| Sample                   | U            | (ppm)      | <sup>206</sup> Pb/<br><sup>204</sup> Pb | U/Th       | <sup>207</sup> Pb*/<br><sup>235</sup> U | ±(%)         | <sup>206</sup> Pb*/<br><sup>238</sup> U | ± (%)        | – Error<br>corre-<br>ction | <sup>206</sup> Pb*<br><sup>238</sup> U | /<br>± (Ma) | <sup>207</sup> Pb*/<br><sup>235</sup> U | ± (Ma)   | <sup>206</sup> Pb*/<br><sup>207</sup> Pb* | ± (Ma)   | Percent<br>concen-<br>ration |
| AY91603144               | 4-79         | 236        | 2724                                    | 1.8        | 4.11156                                 | 5.90         | 0.30330                                 | 3.67         | 0.62                       | 1708                                   | 55          | 1657                                    | 47       | 1592                                      | 43       | 107                          |
| AY9160314/               |              | 180        | 7795                                    | 6.8        | 3.60518                                 | 3.19         | 0.26420                                 | 1.56         | 0.49                       | 1511                                   | 21          | 1551                                    | 25       | 1605                                      | 26       | 94                           |
| AY91603144               |              | 337        | 19684                                   | 0.8        | 4.00348                                 | 1.44         | 0.29119                                 | 1.09         | 0.76                       | 1648                                   | 16          | 1635                                    | 12       | 1619                                      | 9        | 102                          |
| AY91603144               |              | 212        | 6312                                    | 1.9        | 3.42406                                 | 4.89         | 0.24844                                 | 4.18         | 0.86                       | 1430                                   | 53          | 1510                                    | 38       | 1623                                      | 24       | 88                           |
| AY9160314A               | <b>A-45</b>  | 87         | 5682                                    | 3.0        | 3.16772                                 | 8.78         | 0.22915                                 | 5.18         | 0.59                       | 1330                                   | 62          | 1449                                    | 66       | 1629                                      | 66       | 82                           |
| AY9160314A               | A-62         | 126        | 6454                                    | 1.6        | 3.64045                                 | 6.10         | 0.26339                                 | 5.46         | 0.90                       | 1507                                   | 73          | 1558                                    | 47       | 1629                                      | 25       | 93                           |
| AY9160314A               | A-13         | 62         | 2097                                    | 0.6        | 2.79168                                 | 8.66         | 0.20140                                 | 3.24         | 0.37                       | 1183                                   | 35          | 1353                                    | 63       | 1634                                      | 75       | 72                           |
| AY91603144               |              | 104        | 6860                                    | 0.8        | 3.06504                                 | 7.60         | 0.22109                                 | 1.32         | 0.17                       | 1288                                   | 15          | 1424                                    | 57       | 1634                                      | 70       | 79                           |
| AY91603144               |              | 275        | 11741                                   | 1.3        | 3.86102                                 | 4.23         | 0.27835                                 | 4.04         | 0.96                       | 1583                                   | 57          | 1606                                    | 34       | 1635                                      | 12       | 97                           |
| AY9160314A               |              | 38         | 2827                                    | 4.0        | 3.67426                                 | 9.07         | 0.26488                                 | 2.97         | 0.33                       | 1515                                   | 40          | 1566                                    | 70       | 1635                                      | 80       | 93                           |
| AY9160314A               |              | 354        | 21861                                   | 1.6        | 3.70266                                 | 2.71         | 0.26655                                 | 1.28         | 0.47                       | 1523                                   | 17          | 1572                                    | 21       | 1638                                      | 22       | 93                           |
| AY9160314A               |              | 46         | 3291                                    | 0.6        | 3.81447                                 | 9.03         | 0.27402                                 | 7.13         | 0.79                       | 1561                                   | 98<br>46    | 1596                                    | 70       | 1642                                      | 51       | 95<br>76                     |
| AY9160314A               |              | 267<br>406 | 4301                                    | 2.8        | 2.98617                                 | 5.28         | 0.21442                                 | 4.07         | 0.77                       | 1252                                   | 46          | 1404                                    | 39<br>24 | 1643                                      | 31       | 76<br>07                     |
| AY9160314A<br>AY9160314A |              | 406<br>197 | 44302<br>12586                          | 1.6<br>1.6 | 3.94810<br>3.82966                      | 3.02<br>4.20 | 0.28239<br>0.27286                      | 2.92<br>4.01 | 0.97<br>0.96               | 1603<br>1555                           | 41<br>55    | 1624<br>1599                            | 24<br>33 | 1650<br>1657                              | 7<br>11  | 97<br>94                     |
| AY9160314A               |              | 197        | 9172                                    | 1.6        | 3.82900                                 | 4.20<br>3.85 | 0.27286                                 | 4.01<br>2.61 | 0.96                       | 1555                                   | 55<br>33    | 1599                                    | 33<br>30 | 1657                                      | 26       | 94<br>85                     |
| AY9160314/               |              | 66         | 5882                                    | 2.2        | 3.39514                                 | 4.29         | 0.24474                                 | 1.68         | 0.08                       | 1393                                   | 21          | 1503                                    | 33       | 1663                                      | 20<br>37 | 84                           |
| AY9160314A               |              | 91         | 10251                                   | 1.8        | 3.59176                                 | 5.77         | 0.25513                                 | 5.14         | 0.89                       | 1465                                   | 67          | 1548                                    | 45       | 1663                                      | 24       | 88                           |
| AY91603144               |              | 107        | 10708                                   | 2.6        | 4.11384                                 | 7.63         | 0.29138                                 | 6.92         | 0.91                       | 1648                                   | 100         | 1657                                    | 61       | 1668                                      | 30       | 99                           |
| AY91603144               |              | 121        | 16585                                   | 1.2        | 3.96445                                 | 4.73         | 0.28038                                 | 4.18         | 0.88                       | 1593                                   | 59          | 1627                                    | 38       | 1671                                      | 20       | 95                           |
| AY91603144               |              | 284        | 34950                                   | 2.1        | 4.16565                                 | 3.70         | 0.29307                                 | 3.26         | 0.88                       | 1657                                   | 48          | 1667                                    | 30       | 1680                                      | 16       | 99                           |
| AY9160314A               |              | 77         | 14590                                   | 1.1        | 3.89828                                 | 3.76         | 0.27383                                 | 2.90         | 0.77                       | 1560                                   | 40          | 1613                                    | 30       | 1683                                      | 22       | 93                           |
| AY9160314A               | <b>A-24</b>  | 115        | 7411                                    | 2.2        | 3.91102                                 | 3.20         | 0.27458                                 | 2.27         | 0.71                       | 1564                                   | 32          | 1616                                    | 26       | 1684                                      | 21       | 93                           |
| AY91603144               | <b>A-14</b>  | 63         | 7924                                    | 1.3        | 4.20492                                 | 6.56         | 0.29429                                 | 3.81         | 0.58                       | 1663                                   | 56          | 1675                                    | 52       | 1690                                      | 49       | 98                           |
| AY9160314A               | <b>A-73</b>  | 199        | 28659                                   | 1.3        | 4.40542                                 | 3.10         | 0.30668                                 | 2.87         | 0.92                       | 1724                                   | 43          | 1713                                    | 25       | 1700                                      | 11       | 101                          |
| AY9160314A               | <b>A-</b> 71 | 81         | 11405                                   | 2.3        | 4.42981                                 | 4.34         | 0.30725                                 | 3.05         | 0.70                       | 1727                                   | 46          | 1718                                    | 35       | 1707                                      | 28       | 101                          |
| AY9160314A               | 4-67         | 79         | 7406                                    | 1.9        | 3.63597                                 | 5.38         | 0.25197                                 | 3.63         | 0.68                       | 1449                                   | 47          | 1557                                    | 42       | 1708                                      | 36       | 85                           |
| AY91603144               |              | 97         | 10961                                   | 2.7        | 3.27270                                 | 7.21         | 0.22562                                 | 6.68         | 0.93                       | 1312                                   | 79          | 1475                                    | 55       | 1718                                      | 25       | 76                           |
| AY9160314A               |              | 270        | 7502                                    | 3.8        | 3.52090                                 | 5.26         | 0.24232                                 | 4.58         | 0.87                       | 1399                                   | 57          | 1532                                    | 41       | 1721                                      | 24       | 81                           |
| AY91603144               |              | 183        | 16123                                   | 1.7        | 4.46301                                 | 3.62         | 0.30278                                 | 3.41         | 0.94                       | 1705                                   | 51          | 1724                                    | 30       | 1747                                      | 11       | 98                           |
| AY91603144               |              | 104        | 7887                                    | 2.4        | 3.27671                                 | 5.78         | 0.22207                                 | 3.93         | 0.68                       | 1293                                   | 46          | 1476                                    | 44       | 1749                                      | 39       | 74                           |
| AY9160314A               |              | 119        | 16219                                   | 2.2        | 4.35275                                 | 5.35         | 0.28817                                 | 4.76         | 0.89                       | 1632                                   | 68          | 1703                                    | 43       | 1792                                      | 22       | 91                           |
| AY9160314A               |              | 139        | 18445                                   | 1.4        | 4.33949                                 | 4.04         | 0.28620                                 | 3.01         | 0.74                       | 1623                                   | 43          | 1701                                    | 33       | 1799                                      | 25       | 90                           |
| AY9160314A               |              | 253<br>247 | 6474                                    | 2.1<br>6.0 | 3.57547                                 | 3.77         | $0.23478 \\ 0.28292$                    | 2.93<br>3.73 | $0.78 \\ 0.82$             | 1360<br>1606                           | 36<br>53    | 1544<br>1730                            | 30<br>37 | 1807<br>1883                              | 22<br>24 | 75<br>85                     |
| AY9160314A<br>AY9160314A |              | 112        | 11623<br>12037                          | 0.0<br>1.5 | 4.49310<br>4.78239                      | 4.56<br>4.98 | 0.28292                                 | 3.73<br>4.05 | 0.82                       | 1649                                   | 55<br>59    | 1730                                    | 41       | 1941                                      | 24<br>26 | 85<br>85                     |
| AY9160314/               |              | 141        | 22914                                   | 2.8        | 4.78239<br>5.64467                      | 4.98         | 0.29132                                 | 3.07         | 0.64                       | 1828                                   | 49          | 1923                                    | 40       | 2027                                      | 20<br>32 | 85<br>90                     |
| AY9160314/               |              | 168        | 8925                                    | 1.7        | 4.91287                                 | 4.97         | 0.32792                                 | 2.95         | 0.59                       | 1562                                   | 49          | 1925                                    | 40       | 2027                                      | 35       | 90<br>74                     |
| AY9160314A               |              | 561        | 45522                                   | 2.3        | 7.61412                                 | 3.81         | 0.36651                                 | 2.41         | 0.63                       | 2013                                   | 42          | 2187                                    | 34       | 2354                                      | 25       | 86                           |
| AY91603144               |              | 276        | 44732                                   | 1.8        | 9.11317                                 | 2.55         | 0.42581                                 | 2.50         | 0.98                       | 2287                                   | 48          | 2349                                    | 23       | 2404                                      | 4        | 95                           |
| AY91603144               |              | 75         | 10917                                   | 0.8        | 9.68633                                 | 1.52         | 0.45188                                 | 0.87         | 0.57                       | 2404                                   | 18          | 2405                                    | 14       | 2407                                      | 11       | 100                          |
| AY9160314A               | A-51         | 81         | 5838                                    | 1.2        | 9.89737                                 | 4.32         | 0.42562                                 | 3.36         | 0.78                       | 2286                                   | 64          | 2425                                    | 39       | 2544                                      | 23       | 90                           |
| AY9160314A               | A-53         | 161        | 27736                                   | 19.8       | 14.46609                                | 2.06         | 0.51055                                 | 1.71         | 0.83                       | 2659                                   | 37          | 2781                                    | 19       | 2870                                      | 9        | 93                           |
| AY9170315                |              |            |                                         |            |                                         |              |                                         |              |                            |                                        |             |                                         |          | #I                                        | OIV/0!   |                              |
| AY9170315-               | 4            | 811        | 2498                                    | 0.5        | 1.10520                                 | 8.52         | 0.11390                                 | 3.96         | 0.47                       | 695                                    | 26          | 756                                     | 44       | 939                                       | 77       | 74                           |
| AY9170315-               | 76           | 151        | 3200                                    | 2.3        | 1.41928                                 | 10.64        | 0.14476                                 | 6.55         | 0.62                       | 872                                    | 53          | 897                                     | 62       | 961                                       | 86       | 91                           |
| AY9170315-               |              | 199        | 6361                                    | 1.7        | 1.60096                                 | 4.66         | 0.16303                                 | 1.32         | 0.28                       | 974                                    | 12          | 971                                     | 29       | 964                                       | 46       | 101                          |
| AY9170315-               |              | 49         | 1380                                    | 1.3        | 1.45026                                 | 14.49        | 0.14654                                 | 1.96         | 0.14                       | 882                                    | 16          | 910                                     | 84       | 980                                       | 146      | 90                           |
| AY9170315-               |              | 346        | 22830                                   | 1.9        | 1.60846                                 | 4.16         | 0.16198                                 | 3.51         | 0.84                       | 968                                    | 32          | 974                                     | 26       | 986                                       | 23       | 98                           |
| AY9170315-               |              | 055        | 1667                                    | 2.9        | 0.77928                                 | 10.90        | 0.07818                                 | 2.86         | 0.26                       | 485                                    | 13          | 585                                     | 47       | 994                                       | 107      | 49                           |
| AY9170315-               |              | 646<br>205 | 2309                                    | 1.7        | 1.17344                                 | 10.37        | 0.11745                                 | 6.22         | 0.60                       | 716                                    | 42          | 788                                     | 55       | 999                                       | 84       | 72                           |
| AY9170315-               |              | 205        | 17120                                   | 5.0        | 1.69084                                 | 4.28         | 0.16806                                 | 2.51         | 0.59                       | 1001                                   | 23          | 1005                                    | 27       | 1013                                      | 35       | 99                           |
| AY9170315-               |              | 120        | 4192                                    | 2.0        | 1.72207                                 | 7.79         | 0.17037                                 | 5.10         | 0.65                       | 1014                                   | 48          | 1017                                    | 49<br>17 | 1023                                      | 60<br>22 | 99<br>08                     |
| AY9170315-               |              | 296<br>169 | 14193<br>8427                           | 6.3<br>3.4 | 1.70231                                 | 2.69         | 0.16831                                 | 1.47         | 0.55                       | 1003                                   | 14<br>20    | 1009                                    | 17<br>26 | 1024                                      | 23<br>36 | 98<br>04                     |
| AY9170315-<br>AY9170315- |              | 169<br>143 | 8427<br>6546                            | 3.4<br>3.1 | 1.62236<br>1.65739                      | 4.20<br>5.95 | 0.16029<br>0.16343                      | 2.27<br>1.85 | 0.54<br>0.31               | 958<br>976                             | 20<br>17    | 979<br>992                              | 26<br>37 | 1025<br>1029                              | 36<br>57 | 94<br>95                     |
| AY9170315-               |              | 145<br>268 | 6546<br>9071                            | 3.1<br>3.2 | 1.65739                                 | 5.95<br>4.22 | 0.16343                                 | 1.85<br>3.52 | 0.31                       | 1012                                   | 33          | 992<br>1029                             | 27       | 1029                                      | 23       | 95<br>95                     |
| AY9170315-               |              | 208<br>416 | 3442                                    | 5.2<br>2.5 | 1.73330                                 | 4.22<br>6.00 | 0.10998                                 | 3.04         | 0.85                       | 783                                    | 22          | 863                                     | 34       | 1000                                      | 23<br>52 | 93<br>73                     |
|                          | 20 I         | 410        | 5442                                    | 2.3        | 1.55000                                 | 0.00         | 0.12907                                 | 5.04         | 0.51                       | 105                                    | 22          | 000                                     | 54       | 1075                                      | 54       | (Cont                        |

(Cont...)

 Table 1.
 (Contd...)

| semple         werpley         sempley         sempley <th< th=""><th colspan="3"></th><th></th><th colspan="7">Apparent age (Ma)</th><th>Demonst</th></th<> |              |         |                   |      | Apparent age (Ma)   |       |                     |       |                   |                    |        | Demonst          |        |                    |        |                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|-------------------|------|---------------------|-------|---------------------|-------|-------------------|--------------------|--------|------------------|--------|--------------------|--------|-----------------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |         |                   |      | <sup>207</sup> Pb*/ |       | <sup>206</sup> Pb*/ |       | – Error<br>corre- | <sup>206</sup> Pb* | /      |                  | r      |                    |        | Percent concen- |
| AY9170315-4         947         3228         1.2         1.92730         11.44         0.18325         4.31         0.38         1085         43         1001         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         20         1005         100         1005         100         80         80         80         80         80         80         80         80         80         80         80         1007         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         100         1000         1000         1000                                                                                                                                                                                                                                      | Sample       | U (ppm) | <sup>204</sup> Pb | U/Th | <sup>235</sup> U    | ±(%)  | <sup>238</sup> U    | ±(%)  | ction             | <sup>238</sup> U   | ± (Ma) | <sup>235</sup> U | ± (Ma) | <sup>207</sup> Pb* | ± (Ma) | ration          |
| AY9170315-40         294         12027         2.9         1.74461         3.06         0.1657         2.8         0.74         988         21         0125         20         105         20         105         20           AY9170315-41         320         2.528         2.5         2.02739         2.69         0.19156         2.2         2.03         1130         21         125         115         15           AY9170315-77         270         1094         0.9         1.47678         10.28         0.18036         6.3         3.0         4.9         921         6.0         1162         90           AY9170315-57         206         2144         0.3         1.36248         8.66         0.1675         759         0.49         90         1047         51         151         157           AY9170315-57         71         1214         1.0         1.09529         1.377         0.15517         6.81         0.52         930         90         1047         51         151         749         943         45         104         34         34         124         188         171         178         128         128         18         117         151         151                                                                                                                                                                                                                                       | AY9170315-3  | 743     | 11644             | 10.0 | 1.54557             | 2.64  | 0.14732             | 1.94  | 0.74              | 886                | 16     | 949              | 16     | 1097               | 18     | 81              |
| AY9170315-91         2469         470         4.70         4.70         4.70         4.70         150         1107         259           AY9170315-37         478         2932         0.9         1.65603         8.58         0.15563         3.53         0.41         937         31         927         53         1116         78           AY9170315-74         270         1940         0.1         476768         10.28         0.06         839         48         921         63         1122         82           AY9170315-65         688         6455         1.3         1.80556         50.60         0.16750         7.59         0.94         998         70         1077         51         1151         27           AY9170315-7         214         10.662629         7.35         0.94         1080         138         1117         17         118         110         1.05124         118         37         1117         118         110         1.05124         114         1178         110         1.05124         121         1117         116         116         121         118         117         118         110         1.05144         121         121         121                                                                                                                                                                                                                                      | AY9170315-44 |         |                   |      |                     |       | 0.18325             |       |                   |                    |        |                  |        |                    |        | 98              |
| AY9170315-41         Z25128         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z         Z <thz< th=""> <thz< th="">         Z</thz<></thz<>                                                                                                                                                                                                                                                                                                              |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 89              |
| AY9170315-77       478       2932       0.9       1.65603       8.58       0.15636       3.53       0.41       977       31       992       33       1116       78         AY9170315-74       200       2114       0.3       1.30284       11.13       0.12785       6.48       0.58       176       47       873       6.3       1129       90         AY9170315-65       698       6455       1.3       1.80536       8.06       0.16750       7.59       0.94       998       70       1047       51       1151       151       27         AY9170315-50       214       1.0       1.69529       1.307       0.1517       6.81       0.52       900       1007       80       1178       1108       118       18       18       28       1202       21       1244       84       9973       45       1244       84       9973       151       166       1242       157       26       1218       31       1167       26       1244       84       1244       84       1244       84       1244       148       1244       128       124       124       125       1218       31       1244       124       1244                                                                                                                                                                                                                                                                                                                            |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 79              |
| AY9170315-77         270         1994         0.9         1.47678         10.28         0.413003         6.17         0.60         839         48         921         01.122         82           AY9170315-57         120         1.6432         3.1         2.10237         2.69         0.19709         1.85         0.69         1.60         20         1150         18         1131         19           AY9170315-5         71         2194         1.00         1.69529         1.37         0.15517         6.81         0.52         930         59         1007         80         1178         110           AY9170315-57         219         12068         2.0         2.01720         4.182         1.01402         3.78         0.90         180         121         181         122         2.1812         2.1412         2.1812         3.1117         1186         36         1224         49         493         45         1204         49           AY9170315-48         481         1769         2.252         2.15144         8.40         0.021         0.2118         5.24         4.16         0.2214         4.1124         2.1128         2.124         4.1124         2.1215         2.0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>101</td></td<>                                                   |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 101             |
| AY9170315-74         260         2114         0.3         1.36284         11.13         0.12785         6.48         0.58         776         47         87.3         63         11.29         90           AY9170315-65         698         6455         1.3         1.80536         8.06         0.16750         7.59         0.44         998         70         10.75         1.15         1.15         7.1           AY9170315-5         71         2194         1.00         1.66529         7.35         0.14625         0.58         1181         37         1180         2.8         122         2.1           AY9170315-52         251         712         0.9         2.1265         5.18         0.20024         1.59         0.31         1177         17         17         186         36         1224         4.94           AY9170315-42         251         7.10         3.2         2.21         0.1044         3.20         0.90         11.27         15         11.63         2.6         1.218         3.1         1.23         4.1         1.24         1.15         3.4         1.219         5.4         1.26         1.218         5.1         1.29         1.23         1.1         1.23                                                                                                                                                                                                                         |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 84<br>75        |
| AY9170315-95         455         16432         5.1         2.10237         2.69         0.19709         1.85         0.49         1160         20         1151         19         1151         19           AY9170315-5         71         2194         1.0         1.69529         13.07         0.15517         6.81         0.52         930         59         1007         80         1178         110           AY9170315-5         71         21968         1.6         1.2523         4.08         0.20104         3.4         0.85         181         37         180         28         120         2.12         2.1           AY9170315-8         83         408         1.3         2.1262         3.78         0.10040         3.38         0.90         1184         2.1         1.18         3.1           AY9170315-8         841         1767         0.8         2.32424         8.00         0.20034         8.19         90         1183         3.117         1.18         3.2         1.127         1.18         3.125         1.26         1.218         3.1         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.25         1.2                                                                                                                                                                                                                         |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 73<br>69        |
| AY9170315-65         698         6455         1.3         1.80536         8.06         0.16750         7.59         0.94         998         70         707         51         1151         27           AY9170315-7         219         12068         2.0         201720         4.21         0.18423         3.78         0.90         1090         38         1121         28         1182         18           AY9170315-50         234         1162         1.7         2.2255         4.08         0.48         48         49         953         45         1204         438           AY9170315-82         251         7120         3.9         2.12424         3.78         0.01045         2.10         0.55         1124         22         1157         66         1238         11         37         1154         376         1.66         1248         31         31         31         31         31         31         31         322         1.66         1248         30         1238         11         123         1161         2.3         1161         123         1161         123         1161         123         1161         123         1161         123         1161                                                                                                                                                                                                                                            |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 103             |
| AY9170315-5         71         2194         1.0         1.69229         1.07         0.1517         6.81         0.52         930         95         0.07         8.0         1.178         1.10           AY9170315-5         234         11623         1.7         2.22353         4.08         0.20104         3.45         0.85         1181         37         1189         28         1202         21           AY9170315-12         83         4089         1.3         2.21665         5.18         0.20024         1.20         0.31         1177         1186         160         124         49           AY9170315-84         841         16707         0.8         2.33424         8.00         0.20431         8.09         0.1127         25         1172         0.6         1.22         0.128         6.3         1.257         26         1.28         31         21.39           AY9170315-45         157         1382         2.2         2.4569         2.2         0.41         124         21         16         1.218         31         1.20         1.268         1.258         1.25         1.25         30         32         120         1.41         1.25         1.16         0.2117                                                                                                                                                                                                                         |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 87              |
| AY9170315-7       219       12068       2.0       2.01720       4.21       0.14423       3.78       0.90       1090       38       1121       28       1182       21         AY9170315-12       879       5058       0.6       1.55629       7.35       0.14062       6.24       0.85       848       49       953       45       1204       48         AY9170315-92       251       710       3.9       2.12402       3.78       0.19048       2.10       0.56       1124       22       1157       26       1218       31         AY9170315-92       251       716       3.9       2.12402       3.78       0.90       1198       90       1128       62       1128       21       16       1228       21       141       164         AY9170315-45       1148       1767       0.8       2.314545       5.84       0.21183       0.2164       1210       1218       63       1224       41       124       22       2450       124       16       127       24       123       34       127       126       121       2.2169       124       0.250       34       127       34       124       22       24 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>79</td></td<>                                                                                                                                                             |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 79              |
| AY9170315-12       879       50.88       0.6       1.55029       7.35       0.14002       6.24       0.85       848       49       953       45       1204       38         AY9170315-82       251       7120       3.9       2.12402       3.78       0.19048       2.10       0.56       1124       22       1157       26       1218       31         AY9170315-84       81       17697       0.8       2.33424       8.00       0.19106       3.88       0.90       1128       61       1220       61       1228       21       16       1228       21       16       1228       21       16       1228       21       16       1228       21       24       16       1208       67       1279       28       120       11       124       22       1266       28       129       30       105       24       1271       54       127       12       2.51692       7.63       0.2119       5.74       0.47       1288       67       1279       85       127       44       43       24       1271       44       491       1471       48       49170315-7       92       4160       1.867       0.20500       3.44 </td <td></td> <td>92</td>                                                                                                                                               |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 92              |
| AY9170315-82       251       7120       3.9       2.21685       5.18       0.20024       1.59       0.31       1177       1186       3.6       1.204       49         AY9170315-82       251       7120       3.9       2.12402       3.78       0.19048       2.10       0.56       1124       22       1157       26       1218       31         AY9170315-82       118       1767       0.8       2.33244       8.80       0.20830       8.55       0.90       1123       51       167       26       1218       61       1228       21       175       185       1167       26       1218       51       172       1852       2.2       2.020431       8.29       0.90       1128       61       1206       41       1254       22       2       30       1757       50       116       33       2.1270       5.44       1276       60       1279       85       1263       105       1279       85       1263       105       1277       85       1263       1277       85       1263       1277       85       1263       1277       84       147       148       379       141       1275       60       1279 <t< td=""><td>AY9170315-50</td><td>234</td><td>11623</td><td>1.7</td><td>2.22353</td><td></td><td>0.20104</td><td>3.45</td><td>0.85</td><td>1181</td><td>37</td><td>1189</td><td>28</td><td>1202</td><td>21</td><td>98</td></t<>                                                                                        | AY9170315-50 | 234     | 11623             | 1.7  | 2.22353             |       | 0.20104             | 3.45  | 0.85              | 1181               | 37     | 1189             | 28     | 1202               | 21     | 98              |
| AY9170315-92       251       7120       3.9       2.12402       3.78       0.10948       2.10       0.56       1124       22       1157       26       1218       31         AY9170315-19       1148       10754       5.0       2.33424       8.80       0.20830       8.55       0.97       1220       94       1223       61       1228       21         AY9170315-19       1148       10754       5.0       2.24845       5.84       0.2163       63       1216       63       1254       22         AY9170315-46       106       7644       3.3       2.47905       3.94       0.21781       2.52       0.64       1270       85       1266       28       1259       30         AY9170315-47       54       5127       1.2       2.51692       7.63       0.21926       4.54       0.57       1278       52       1277       54       1278       49         AY9170315-75       92       4.061       1.8       2.6703       6.28       0.20500       3.84       0.61       1202       42       1283       41       1277       54       1276       60       133       314       123       441       1473       144                                                                                                                                                                                                                                                                                                                       | AY9170315-12 | 879     | 5058              | 0.6  | 1.55629             | 7.35  | 0.14062             | 6.24  | 0.85              | 848                | 49     | 953              | 45     | 1204               | 38     | 70              |
| AY9170315-88       481       17697       0.8       2.33424       8.80       0.20830       8.55       0.97       1220       94       1223       61       1228       21         AY9170315-62       157       13825       2.2       2.31696       9.22       0.20431       8.29       0.90       1128       63       1216       63       1218       63       1251       39         AY9170315-62       106       7.44       3.3       2.1646       9.22       0.20431       8.29       0.90       1128       63       1216       62       1259       30         AY9170315-67       164       3.3       2.1705       3.4       0.2178       40       0.1778       0.50       1278       49       1233       44       1287       48         AY9170315-75       54       127       1.2       2.51692       7.30       0.2196       4.84       0.991       64       1085       56       1278       49         AY9170315-75       54       4732       0.9       2.0562       4.00       0.1778       2.02       0.51       1052       20       1138       271       304       33         AY9170315-40       374       4732 <td>AY9170315-83</td> <td>83</td> <td>4089</td> <td>1.3</td> <td>2.21685</td> <td>5.18</td> <td>0.20024</td> <td>1.59</td> <td>0.31</td> <td>1177</td> <td>17</td> <td>1186</td> <td>36</td> <td>1204</td> <td>49</td> <td>98</td>                                                                                         | AY9170315-83 | 83      | 4089              | 1.3  | 2.21685             | 5.18  | 0.20024             | 1.59  | 0.31              | 1177               | 17     | 1186             | 36     | 1204               | 49     | 98              |
| AY9170315-19       1148       10754       5.0       2.15514       3.76       0.19106       3.38       0.90       1127       35       1167       26       1211       16         AY9170315-45       200       12085       2.7       2.45845       5.84       0.21655       5.38       0.92       1264       61       1206       41       1254       22         AY9170315-46       118       3.770       4.6       2.52264       12.16       0.22119       5.74       0.44       1288       67       1279       85       1277       54       1275       60         AY9170315-47       54       5127       1.2       2.51692       7.63       0.21926       4.54       0.59       1278       52       1277       54       1275       60         AY9170315-47       9       4160       1.8       2.36703       6.28       0.20000       3.84       0.61       1202       42       1233       44       1287       48         AY9170315-40       133       6256       3.7       2.29105       4.40       0.1772       2.02       0.51       1052       1038       2.2       130       132       129       132       134       42 <td>AY9170315-92</td> <td>251</td> <td>7120</td> <td>3.9</td> <td>2.12402</td> <td>3.78</td> <td>0.19048</td> <td>2.10</td> <td>0.56</td> <td>1124</td> <td>22</td> <td>1157</td> <td>26</td> <td>1218</td> <td>31</td> <td>92</td>                                                                                | AY9170315-92 | 251     | 7120              | 3.9  | 2.12402             | 3.78  | 0.19048             | 2.10  | 0.56              | 1124               | 22     | 1157             | 26     | 1218               | 31     | 92              |
| AY9170315-62       157       13825       2.2       2.31606       9.22       0.20431       8.29       0.90       1124       61       1260       41       1254       22         AY9170315-56       106       7644       3.3       2.47905       3.94       0.21781       2.52       0.64       1270       29       1266       28       1259       30         AY9170315-56       118       3770       4.6       2.52642       12.16       0.2119       5.74       0.47       1288       67       1277       85       1263       105         AY9170315-57       524       123       6.6       0.16623       7.04       0.81       991       64       1085       56       1278       42       1243       44         AY9170315-79       504       4732       0.9       2.06562       4.00       0.17728       2.02       0.51       1053       33       1350       22       1330       132         AY9170315-70       504       4732       0.9       2.26562       4.00       0.17728       2.02       0.51       1052       20       1138       27       1344       1294       433         AY9170315-40       734       1                                                                                                                                                                                                                                                                                                                         | AY9170315-88 | 481     | 17697             | 0.8  | 2.33424             | 8.80  | 0.20830             | 8.55  | 0.97              | 1220               | 94     | 1223             | 61     | 1228               | 21     | 99              |
| AY9170315-45       200       12085       2.7       2.45845       5.84       0.21655       5.38       0.92       1264       61       1260       41       1254       22         AY9170315-36       118       3.70       4.6       2.52264       12.16       0.22119       5.74       0.47       1228       67       1279       85       1263       105         AY9170315-47       54       5127       1.2       2.51692       7.63       0.21926       4.54       0.59       1278       52       1277       54       1275       60         AY9170315-75       9       4160       1.8       2.36703       6.28       0.02000       3.84       0.61       1202       42       1233       44       1287       48         AY9170315-70       504       4732       0.9       2.06562       4.00       0.17724       3.00       1280       56       1297       39       1326       22         AY9170315-60       173       1772       2.7794       2.98       0.22340       2.04       0.33       1350       22       1348       42       1345       2       1373       14       2.49170315-64       138       0.21       1.44 <td< td=""><td>AY9170315-19</td><td>1148</td><td>10754</td><td>5.0</td><td></td><td>3.76</td><td>0.19106</td><td>3.38</td><td>0.90</td><td>1127</td><td>35</td><td>1167</td><td>26</td><td>1241</td><td>16</td><td>91</td></td<>                                                                                      | AY9170315-19 | 1148    | 10754             | 5.0  |                     | 3.76  | 0.19106             | 3.38  | 0.90              | 1127               | 35     | 1167             | 26     | 1241               | 16     | 91              |
| AY9170315-96       106       7644       3.3       2.47905       3.94       0.21781       2.52       0.64       1270       29       1266       28       1259       30         AY9170315-36       18       3770       4.6       2.5264       12.16       0.22119       5.74       0.47       1288       67       1279       85       1263       105         AY9170315-69       287       3359       0.8       1.91140       8.67       0.16623       7.04       0.81       1201       48       128       42       1283       44       1287       4.4       128       44       1287       4.4       1284       44       1287       1304       33       1304       33       1310       22       1330       132       210       38       1294       44         AY9170315-75       504       4732       0.9       2.66562       4.00       0.1774       3.05       0.56       1163       32       1210       38       124       44       33       479170315-30       374       22363       1.7       2.7194       2.88       0.23240       2.04       0.35       1347       25       1348       32       1330       13       1370                                                                                                                                                                                                                                                                                                                  |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 96              |
| AY9170315-36       118       3770       4.6       2.5264       1.216       0.22195       5.74       0.47       1288       67       1279       85       1263       105         AY9170315-69       287       3359       0.8       1.91140       8.67       0.16623       7.04       0.81       991       64       1085       66       1277       54       1277       54       1277       54       1277       54       1277       54       1277       54       1277       54       1277       54       1277       54       1277       54       1287       49         AY9170315-75       92       4160       1.8       2.36703       6.28       0.20500       3.84       0.61       133       32       120       38       1294       44         AY9170315-59       504       4732       0.9       2.06562       4.00       0.17728       2.02       0.51       1527       1348       42       1348       52       1347       25       1348       42       1348       52       149170315-43       49       2.39116       7.36       0.12585       2.47       0.33       764       18       937       1314       136       0.372                                                                                                                                                                                                                                                                                                                   |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 101             |
| AY9170315-47       54       5127       1.2       2.51692       7.63       0.21926       4.54       0.59       1278       52       1277       54       1275       60         AY9170315-69       287       3359       0.8       1.91140       8.67       0.16623       7.04       0.81       910       64       1085       56       1278       49         AY9170315-75       52       4160       1.8       2.36703       6.28       0.20500       3.84       0.61       1202       10.3       8       1294       44         AY9170315-75       54       4732       0.9       2.06562       4.00       0.17728       2.02       0.51       1052       20       11.8       27       1304       33         AY9170315-40       206       1.73       2.77947       2.98       0.23538       2.68       0.90       1363       33       1350       22       1330       132         AY9170315-40       173       1.6       1.51721       7.36       0.23240       2.04       0.35       1474       1286       4.1       1242       52       1372       59         AY9170315-40       123       9.8634       1.6       2.51721                                                                                                                                                                                                                                                                                                                          |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 101             |
| AY9170315-69       287       3359       0.8       1.91140       8.67       0.16623       7.04       0.81       991       64       1085       56       1278       49         AY9170315-75       92       4160       1.8       2.26703       6.28       0.20500       3.84       0.61       1202       42       1233       44       1287       48         AY9170315-70       504       4732       0.9       2.05662       4.00       0.17728       2.02       0.51       1052       20       1138       27       1304       33         AY9170315-39       374       2.2333       1.7       2.77928       5.78       0.23240       2.04       0.35       1347       25       1348       42       1348       52       330       144       1370       67         AY9170315-43       98       8634       1.6       1.51721       7.36       0.12585       2.47       0.33       764       18       937       44       1370       67         AY9170315-26       208       3570       1.4       2.39715       7.41       0.19862       4.16       0.56       163       41314       36       1373       17         AY9170315-                                                                                                                                                                                                                                                                                                                         |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 102             |
| AY9170315-75       92       4160       1.8       2.36703       6.28       0.20500       3.84       0.61       1202       42       1233       44       1287       48         AY9170315-8       103       6256       3.7       2.29180       5.44       0.19774       3.05       0.56       1163       32       1210       38       1240       43         AY9170315-97       504       4732       0.9       2.06562       4.00       0.17728       2.0       1163       32       1210       38       124       433         AY9170315-39       374       22363       1.7       2.71947       2.98       0.23538       2.68       0.90       1363       33       1350       22       130       13         AY9170315-44       173       1079       2.1       2.48054       6.38       0.20655       4.93       0.77       1211       54       1266       45       1362       39         AY9170315-4       479       288       3.70       1.4       2.39765       1.6       1.5721       7.41       0.18962       4.16       0.56       168       44       1245       1373       17         AY9170315-54       423       9                                                                                                                                                                                                                                                                                                                         |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 100             |
| AY9170315-8       103       6256       3.7       2.29180       5.44       0.19774       3.05       0.56       1163       32       1210       38       1294       44         AY9170315-97       504       4732       0.9       2.06562       4.00       0.17728       2.02       0.51       1052       20       1138       27       1304       33         AY9170315-39       374       22363       1.7       2.77947       2.98       0.23538       2.68       0.90       1363       33       1350       22       1330       13         AY9170315-60       173       10799       2.1       2.48054       6.38       0.22665       4.99       0.77       1211       54       1266       45       1362       39         AY9170315-26       208       3570       1.4       2.39715       7.41       0.19862       4.16       0.56       168       44       1242       52       1372       59         AY9170315-26       208       3570       5.3       2.94616       2.25       0.24337       2.00       0.89       1404       25       1394       17       1378       17         AY9170315-46       126       5771 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>78</td></t<>                                                                                                                                                            |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 78              |
| AY9170315-97       504       4732       0.9       2.06562       4.00       0.17728       2.02       0.51       1052       20       1138       27       1304       33         AY9170315-100       206       10327       1.5       2.58752       5.35       0.21965       4.84       0.90       1363       33       1350       22       1330       13         AY9170315-39       34       22363       1.7       2.77028       5.78       0.23240       2.04       0.35       1347       25       1348       42       1348       52         AY9170315-34       479       2081       1.6       1.5172       7.36       0.25285       2.47       0.33       764       18       937       44       1370       67         AY9170315-26       208       3570       1.4       2.39715       7.41       0.19862       4.16       0.56       1168       44       1242       52       1372       59         AY9170315-40       423       9886       3.2       2.64785       4.94       0.23671       1.90       0.45       1370       23       1374       31       130       1373       17         AY9170315-51       4.3217       <                                                                                                                                                                                                                                                                                                                     |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 93              |
| AY9170315-100       206       10327       1.5       2.58752       5.35       0.21965       4.84       0.90       1280       56       1297       39       1326       22         AY9170315-39       374       22363       1.7       2.77947       2.98       0.23538       2.68       0.90       1363       33       1350       22       1330       13         AY9170315-39       374       22361       1.6       2.77047       2.98       0.23538       2.68       0.90       1363       33       1350       22       1330       13         AY9170315-34       479       2081       1.6       1.51721       7.36       0.12585       2.47       0.33       764       18       937       44       1370       67         AY9170315-31       107       6885       2.2       2.64785       4.94       0.21303       7.60       0.76       1350       46       1359       371       373       31         AY9170315-49       423       9886       3.2       2.64785       4.94       0.21303       7.60       7.67       1370       31       374       31       338       34       1373       11       299       1371       31                                                                                                                                                                                                                                                                                                                      |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 90<br>81        |
| AY9170315-39       374       22363       1.7       2.77947       2.98       0.23538       2.68       0.90       1363       33       1350       22       1330       13         AY9170315-43       98       8634       1.6       2.77028       5.78       0.23240       2.04       0.35       1347       25       1348       42       1348       52         AY9170315-60       173       10799       2.1       2.48054       6.38       0.20665       4.93       0.77       1211       54       1266       45       1362       39         AY9170315-26       208       3570       1.4       2.39715       7.41       0.19862       4.16       0.56       1168       44       1242       52       1372       59         AY9170315-49       423       9886       3.2       2.64785       4.94       0.21333       4.63       0.94       1278       54       1314       36       137       1373       31         AY9170315-46       101       5781       16.0       2.86788       4.20       0.23671       1.90       0.45       1370       23       1374       31       1380       36         AY9170315-46       126       <                                                                                                                                                                                                                                                                                                                     |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 81<br>97        |
| AY9170315-43       98       8634       1.6       2.77028       5.78       0.23240       2.04       0.35       1347       25       1348       42       1348       52         AY9170315-60       173       10799       2.1       2.48054       6.38       0.20665       4.93       0.77       1211       54       1526       45       1362       39         AY9170315-26       208       3570       1.4       2.39715       7.41       0.19862       4.16       0.56       1168       44       1242       52       1372       59         AY9170315-31       107       6885       2.3       2.81256       4.97       0.23300       3.76       0.76       1350       46       1359       37       1373       31         AY9170315-49       423       9886       3.2       2.64785       4.94       0.21933       4.63       0.94       1278       54       1314       36       1373       17         AY9170315-46       101       5781       16.0       2.86788       4.20       0.23617       1.90       0.45       1370       23       1374       31       1380       36         AY9170315-46       126       5771       <                                                                                                                                                                                                                                                                                                                     |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 102             |
| AY9170315-60173107992.12.480546.380.206654.930.77121154126645136239AY9170315-3447920811.61.517217.360.128852.470.337641893744137067AY9170315-2620835701.42.397157.410.198624.160.56116844124252137259AY9170315-3110768852.32.812564.970.233003.760.76135046135937137331AY9170315-4942398863.22.647854.940.219334.630.94127854131436137317AY9170315-514432171.82.867884.200.236711.900.45137023137431138036AY9170315-514432171.82.878676.980.236126.180.89136776137651139231AY9170315-4012657711.92.878676.980.236726.180.89136776137651139231AY9170315-4211455561.52.72754.600.157064.290.279403710961021419148AY9170315-43121422.564997.080.222375.830.821294681347                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 102             |
| AY9170315-34       479       2081       1.6       1.51721       7.36       0.12585       2.47       0.33       764       18       937       44       1370       67         AY9170315-26       208       3570       1.4       2.39715       7.41       0.19862       4.16       0.56       1168       44       1242       52       1372       59         AY9170315-31       107       6885       2.2       2.81256       4.97       0.23300       3.63       0.76       1350       46       1359       37       1373       31         AY9170315-49       423       9886       3.2       2.64785       4.94       0.21933       4.63       0.94       1278       54       1314       36       1373       17         AY9170315-51       44       3217       1.8       2.58348       15.99       0.21293       13.12       0.82       1244       147       1296       111       1382       88         AY9170315-46       126       5771       1.9       2.8787       6.98       0.23612       6.18       0.89       1367       76       137       51       1392       31         AY9170315-47       12       4682                                                                                                                                                                                                                                                                                                                                |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 89              |
| AY9170315-2620835701.42.397157.410.198624.160.56116844124252137259AY9170315-3110768852.32.812564.970.233003.760.76135046135937137331AY9170315-4942398863.22.647854.940.219334.630.94127854131436137317AY9170315-98602357605.32.946162.250.243372.000.45137023137431138036AY9170315-16101578116.02.867884.200.236711.900.45137023137431138036AY9170315-4612657711.92.878676.980.22129313.120.8212441471296111138288AY9170315-3211455561.52.723754.600.223772.790.61129833133534139535AY9170315-4812246821.42.766997.080.222375.830.82129468134752143138AY9170315-52827100444.52.542913.480.1991103.140.90117134128425148014AY9170315-679373221.83.200326.450.236935.440.841371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 56              |
| AY9170315-31       107       6885       2.3       2.81256       4.97       0.23300       3.76       0.76       1350       46       1359       37       1373       31         AY9170315-49       423       9886       3.2       2.64785       4.94       0.21933       4.63       0.94       1278       54       1314       36       1373       17         AY9170315-51       602       35760       5.3       2.94616       2.25       0.24337       2.00       0.89       1404       25       1394       17       1378       10         AY9170315-51       44       3217       1.8       2.58348       15.99       0.21293       13.12       0.82       1244       147       1296       111       1382       88         AY9170315-46       126       5771       1.9       2.87867       6.98       0.23612       6.18       0.89       1367       76       1376       51       1392       31         AY9170315-41       29       1037       2.1       1.94255       16.06       0.15706       4.29       0.27       940       37       1096       102       1419       148         AY9170315-87       716       1042                                                                                                                                                                                                                                                                                                                         |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 85              |
| AY9170315-98602357605.32.946162.250.243372.000.89140425139417137810AY9170315-16101578116.02.867884.200.236711.900.45137023137431138036AY9170315-514432171.82.887876.980.2129313.120.8212441471296111138288AY9170315-3211455561.52.723754.600.223072.790.61129833133534139535AY9170315-4817246821.42.766997.080.222375.830.82129468134752143138AY9170315-52827100444.52.542913.480.199103.140.90117134128425148014AY9170315-679373221.83.20326.450.236935.440.84137167145749158632AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-7316093851.23.744124.860.274474.320.891564 <td></td> <td>31</td> <td>98</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    | 31     | 98              |
| AY9170315-16101578116.02.867884.200.236711.900.45137023137431138036AY9170315-514432171.82.5834815.990.2129313.120.8212441471296111138288AY9170315-4612657711.92.878676.980.236126.180.89136776137651139231AY9170315-4412910372.11.9425516.060.157064.290.279403710961021419148AY9170315-4817246821.42.766997.080.222375.830.82129468134752143138AY9170315-52827100444.52.542913.480.199103.140.90117134128425148014AY9170315-779373221.83.200326.450.236935.440.84137167145749158632AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-743151.603.630912.720.265752.510.92151934 </td <td>AY9170315-49</td> <td>423</td> <td>9886</td> <td>3.2</td> <td>2.64785</td> <td>4.94</td> <td>0.21933</td> <td>4.63</td> <td>0.94</td> <td>1278</td> <td>54</td> <td>1314</td> <td>36</td> <td>1373</td> <td>17</td> <td>93</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AY9170315-49 | 423     | 9886              | 3.2  | 2.64785             | 4.94  | 0.21933             | 4.63  | 0.94              | 1278               | 54     | 1314             | 36     | 1373               | 17     | 93              |
| AY9170315-514432171.82.5834815.990.2129313.120.8212441471296111138288AY9170315-4612657711.92.878676.980.236126.180.89136776137651139231AY9170315-3211455561.52.723754.600.223072.790.61129833133534139535AY9170315-442910372.11.9425516.060.15704.290.279403710961021419148AY9170315-80256104232.03.221194.440.252473.960.89145151146234147819AY9170315-52827100444.52.542913.480.199103.140.90117134128425148014AY9170315-679373221.83.200326.450.236935.440.84137167145749158632AY9170315-7133570621.53.7446046.570.251316.190.94145580151551160021AY9170315-3016093851.23.744124.860.274474.320.89156460158138160421AY9170315-37362191720.93.599752.040.263771.750.861506<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AY9170315-98 | 602     | 35760             | 5.3  | 2.94616             | 2.25  | 0.24337             | 2.00  | 0.89              | 1404               | 25     | 1394             | 17     | 1378               | 10     | 102             |
| AY9170315-4612657711.92.878676.980.236126.180.89136776137651139231AY9170315-3211455561.52.723754.600.223072.790.61129833133534139535AY9170315-142910372.11.9425516.060.157064.290.279403710961021419148AY9170315-4817246821.42.766997.080.222375.830.82129468134752143138AY9170315-49256104232.03.221194.440.252473.960.89145151146234147819AY9170315-52827100444.52.542913.480.199103.140.90117134128425148014AY9170315-679373221.83.200326.450.228732.090.96158529158632AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-3016093851.23.744124.860.274474.320.89156460158138160421AY9170315-73362191720.93.599752.040.263071.750.861506241550 <td>AY9170315-16</td> <td>101</td> <td>5781</td> <td>16.0</td> <td>2.86788</td> <td>4.20</td> <td>0.23671</td> <td>1.90</td> <td>0.45</td> <td>1370</td> <td>23</td> <td>1374</td> <td>31</td> <td>1380</td> <td>36</td> <td>99</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AY9170315-16 | 101     | 5781              | 16.0 | 2.86788             | 4.20  | 0.23671             | 1.90  | 0.45              | 1370               | 23     | 1374             | 31     | 1380               | 36     | 99              |
| AY9170315-3211455561.52.723754.600.223072.790.61129833133534139535AY9170315-142910372.11.9425516.060.157064.290.279403710961021419148AY9170315-4817246821.42.766997.080.222375.830.82129468134752143138AY9170315-80256104232.03.221194.440.252473.960.89145151146234147819AY9170315-709373221.83.200326.450.236935.440.84137167145749158632AY9170315-77716310810.93.778862.180.278732.090.9615852915881715936AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-7316093851.23.744124.860.274474.320.89156460158138160421AY9170315-73362191720.93.599752.040.263071.750.86150624155016161010AY9170315-81195124692.22.956736.500.215805.720.881260 <td>AY9170315-51</td> <td>44</td> <td>3217</td> <td>1.8</td> <td>2.58348</td> <td>15.99</td> <td>0.21293</td> <td>13.12</td> <td>0.82</td> <td>1244</td> <td>147</td> <td>1296</td> <td>111</td> <td>1382</td> <td>88</td> <td>90</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AY9170315-51 | 44      | 3217              | 1.8  | 2.58348             | 15.99 | 0.21293             | 13.12 | 0.82              | 1244               | 147    | 1296             | 111    | 1382               | 88     | 90              |
| AY9170315-142910372.11.9425516.060.157064.290.279403710961021419148AY9170315-4817246821.42.766997.080.222375.830.82129468134752143138AY9170315-80256104232.03.221194.440.252473.960.89145151146234147819AY9170315-52827100444.52.542913.480.199103.140.90117134128425148014AY9170315-679373221.83.200326.450.236935.440.84137167145749158632AY9170315-87716310810.93.778862.180.278732.090.9615852915881715936AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-8716093851.23.744124.860.274474.320.89156460158138160421AY9170315-27362191720.93.599752.040.263071.750.86150624155016161010AY9170315-38195124692.22.956736.500.215805.720.881260 <td></td> <td>126</td> <td>5771</td> <td>1.9</td> <td>2.87867</td> <td>6.98</td> <td>0.23612</td> <td>6.18</td> <td>0.89</td> <td>1367</td> <td>76</td> <td>1376</td> <td>51</td> <td>1392</td> <td>31</td> <td>98</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 126     | 5771              | 1.9  | 2.87867             | 6.98  | 0.23612             | 6.18  | 0.89              | 1367               | 76     | 1376             | 51     | 1392               | 31     | 98              |
| AY9170315-4817246821.42.766997.080.222375.830.82129468134752143138AY9170315-80256104232.03.221194.440.252473.960.89145151146234147819AY9170315-52827100444.52.542913.480.199103.140.90117134128425148014AY9170315-679373221.83.200326.450.236935.440.84137167145749158632AY9170315-77716310810.93.778862.180.278732.090.9615852915881715936AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-3016093851.23.744124.860.274474.320.89156460158138160421AY9170315-27362191720.93.599752.040.263071.750.86150624155016161010AY9170315-38195124692.22.956736.500.215805.720.88126065139748161229AY9170315-63539121802.13.611023.340.262812.970.891504 <td></td> <td>93</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 93              |
| AY9170315-80256104232.03.221194.440.252473.960.89145151146234147819AY9170315-52827100444.52.542913.480.199103.140.90117134128425148014AY9170315-679373221.83.200326.450.236935.440.84137167145749158632AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-3016093851.23.744124.860.274474.320.89156460158138160421AY9170315-73362191720.93.630912.720.265752.510.92151934155622160710AY9170315-73362191720.93.597752.040.263071.750.86150624155016161010AY9170315-38195124692.22.956736.500.215805.720.88126065139748161229AY9170315-63539121802.13.611023.340.262812.970.891504 </td <td></td> <td>66</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 66              |
| AY9170315-52827100444.52.542913.480.199103.140.90117134128425148014AY9170315-679373221.83.200326.450.236935.440.84137167145749158632AY9170315-77716310810.93.778862.180.278732.090.9615852915881715936AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-3016093851.23.744124.860.274474.320.89156460158138160421AY9170315-77362191720.93.599752.040.263071.750.86150624155016161010AY9170315-38195124692.22.956736.500.215805.720.88126065139748161229AY9170315-63539121802.13.611023.340.262812.970.89150440155226161814AY9170315-82172121571.43.751412.730.270581.720.63154424158222163420AY9170315-5412358180.93.809055.700.274524.750.831564 <td></td> <td>90</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 90              |
| AY9170315-679373221.83.200326.450.236935.440.84137167145749158632AY9170315-87716310810.93.778862.180.278732.090.9615852915881715936AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-3016093851.23.744124.860.274474.320.89156460158138160421AY9170315-18592168506.03.630912.720.265752.510.92151934155622160710AY9170315-27362191720.93.599752.040.263071.750.86150624155016161010AY9170315-38195124692.22.956736.500.215805.720.88126065139748161229AY9170315-63539121802.13.611023.340.262812.970.89150440155226161814AY9170315-82172121571.43.751412.730.270581.720.63154424158222163420AY9170315-5412358180.93.809055.700.274524.750.831564 <td></td> <td>98<br/>70</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 98<br>70        |
| AY9170315-87716310810.93.778862.180.278732.090.9615852915881715936AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-3016093851.23.744124.860.274474.320.89156460158138160421AY9170315-18592168506.03.630912.720.265752.510.92151934155622160710AY9170315-27362191720.93.599752.040.263071.750.86150624155016161010AY9170315-38195124692.22.956736.500.215805.720.88126065139748161229AY9170315-63539121802.13.611023.340.262812.970.89150440155226161814AY9170315-82172121571.43.751412.730.270581.720.63154424158222163420AY9170315-5412358180.93.809055.700.274524.750.83156466159545163629AY9170315-667487641.73.966767.330.285036.530.891617 <td></td> <td>79<br/>86</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 79<br>86        |
| AY9170315-7133570621.53.446046.570.253136.190.94145580151551160021AY9170315-3016093851.23.744124.860.274474.320.89156460158138160421AY9170315-18592168506.03.630912.720.265752.510.92151934155622160710AY9170315-27362191720.93.599752.040.263071.750.86150624155016161010AY9170315-38195124692.22.956736.500.215805.720.88126065139748161229AY9170315-63539121802.13.611023.340.262812.970.89150440155226161814AY9170315-82172121571.43.751412.730.270581.720.63154424158222163420AY9170315-5412358180.93.809055.700.274524.750.83156466159545163629AY9170315-667487641.73.966767.330.285036.530.89161793162758164131AY9170315-8916172011.82.512268.000.179997.560.951067 <td></td> <td>86</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 86              |
| AY9170315-3016093851.23.744124.860.274474.320.89156460158138160421AY9170315-18592168506.03.630912.720.265752.510.92151934155622160710AY9170315-27362191720.93.599752.040.263071.750.86150624155016161010AY9170315-38195124692.22.956736.500.215805.720.88126065139748161229AY9170315-63539121802.13.611023.340.262812.970.89150440155226161814AY9170315-82172121571.43.751412.730.270581.720.63154424158222163420AY9170315-5412358180.93.809055.700.274524.750.83156466159545163629AY9170315-667487641.73.966767.330.285036.530.89161793162758164131AY9170315-8916172011.82.512268.000.179997.560.95106774127657164724AY9170315-1110872741.33.862942.310.276511.020.441574 <td></td> <td>99<br/>01</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 99<br>01        |
| AY9170315-18592168506.03.630912.720.265752.510.92151934155622160710AY9170315-27362191720.93.599752.040.263071.750.86150624155016161010AY9170315-38195124692.22.956736.500.215805.720.88126065139748161229AY9170315-63539121802.13.611023.340.262812.970.89150440155226161814AY9170315-82172121571.43.751412.730.270581.720.63154424158222163420AY9170315-5412358180.93.809055.700.274524.750.83156466159545163629AY9170315-667487641.73.966767.330.285036.530.89161793162758164131AY9170315-8916172011.82.512268.000.179997.560.95106774127657164724AY9170315-1110872741.33.862942.310.276511.020.44157414160618164819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 91<br>97        |
| AY9170315-27362191720.93.599752.040.263071.750.86150624155016161010AY9170315-38195124692.22.956736.500.215805.720.88126065139748161229AY9170315-63539121802.13.611023.340.262812.970.89150440155226161814AY9170315-63539121871.43.751412.730.270581.720.63154424158222163420AY9170315-5412358180.93.809055.700.274524.750.83156466159545163629AY9170315-667487641.73.966767.330.285036.530.89161793162758164131AY9170315-8916172011.82.512268.000.179997.560.95106774127657164724AY9170315-1110872741.33.862942.310.276511.020.44157414160618164819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 97<br>95        |
| AY9170315-38195124692.22.956736.500.215805.720.88126065139748161229AY9170315-63539121802.13.611023.340.262812.970.89150440155226161814AY9170315-63539121571.43.751412.730.270581.720.63154424158222163420AY9170315-5412358180.93.809055.700.274524.750.83156466159545163629AY9170315-667487641.73.966767.330.285036.530.89161793162758164131AY9170315-8916172011.82.512268.000.179997.560.95106774127657164724AY9170315-1110872741.33.862942.310.276511.020.44157414160618164819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 95<br>94        |
| AY9170315-63539121802.13.611023.340.262812.970.89150440155226161814AY9170315-82172121571.43.751412.730.270581.720.63154424158222163420AY9170315-5412358180.93.809055.700.274524.750.83156466159545163629AY9170315-667487641.73.966767.330.285036.530.89161793162758164131AY9170315-8916172011.82.512268.000.179997.560.95106774127657164724AY9170315-1110872741.33.862942.310.276511.020.44157414160618164819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 94<br>78        |
| AY9170315-82172121571.43.751412.730.270581.720.63154424158222163420AY9170315-5412358180.93.809055.700.274524.750.83156466159545163629AY9170315-667487641.73.966767.330.285036.530.89161793162758164131AY9170315-8916172011.82.512268.000.179997.560.95106774127657164724AY9170315-1110872741.33.862942.310.276511.020.44157414160618164819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 93              |
| AY9170315-5412358180.93.809055.700.274524.750.83156466159545163629AY9170315-667487641.73.966767.330.285036.530.89161793162758164131AY9170315-8916172011.82.512268.000.179997.560.95106774127657164724AY9170315-1110872741.33.862942.310.276511.020.44157414160618164819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 93<br>94        |
| AY9170315-667487641.73.966767.330.285036.530.89161793162758164131AY9170315-8916172011.82.512268.000.179997.560.95106774127657164724AY9170315-1110872741.33.862942.310.276511.020.44157414160618164819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 96              |
| AY9170315-89         161         7201         1.8         2.51226         8.00         0.17999         7.56         0.95         1067         74         1276         57         1647         24           AY9170315-11         108         7274         1.3         3.86294         2.31         0.27651         1.02         0.44         1574         14         1606         18         1648         19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 99              |
| AY9170315-11 108 7274 1.3 3.86294 2.31 0.27651 1.02 0.44 1574 14 1606 18 1648 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 65              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |         |                   |      |                     |       |                     |       |                   |                    |        |                  |        |                    |        | 95              |
| 1117170312000 100 7077 0.2 0.11012 0.00 0.20702 0.01 1010 1010 11 1010 40 1000 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AY9170315-33 | 156     | 9649              | 3.2  | 3.71812             | 5.85  | 0.26482             | 5.31  | 0.91              | 1515               | 71     | 1575             | 46     | 1658               | 23     | 91              |

Table 1.(Contd...)

|              |         |                                         |      | Isotopic ratio                          |       |                                         | – Error |                 | Percent                                |             |                                         |     |                                           |        |         |
|--------------|---------|-----------------------------------------|------|-----------------------------------------|-------|-----------------------------------------|---------|-----------------|----------------------------------------|-------------|-----------------------------------------|-----|-------------------------------------------|--------|---------|
| Sample       | U (ppm) | <sup>206</sup> Pb/<br><sup>204</sup> Pb | U/Th | <sup>207</sup> Pb*/<br><sup>235</sup> U | ±(%)  | <sup>206</sup> Pb*/<br><sup>238</sup> U | ±(%)    | corre-<br>ction | <sup>206</sup> Pb*<br><sup>238</sup> U | /<br>± (Ma) | <sup>207</sup> Pb*/<br><sup>235</sup> U |     | <sup>206</sup> Pb*/<br><sup>207</sup> Pb* | ± (Ma) | concen- |
| AY9170315-86 | 442     | 14383                                   | 0.8  | 3.96533                                 | 1.84  | 0.28147                                 | 1.41    | 0.77            | 1599                                   | 20          | 1627                                    | 15  | 1664                                      | 11     | 96      |
| AY9170315-42 | 146     | 10203                                   | 2.2  | 3.73860                                 | 6.64  | 0.26424                                 | 6.09    | 0.92            | 1512                                   | 82          | 1580                                    | 52  | 1672                                      | 24     | 90      |
| AY9170315-72 | 64      | 7198                                    | 1.1  | 3.85398                                 | 7.02  | 0.27113                                 | 6.00    | 0.85            | 1547                                   | 82          | 1604                                    | 55  | 1681                                      | 34     | 92      |
| AY9170315-9  | 61      | 2969                                    | 2.0  | 3.77136                                 | 5.10  | 0.26473                                 | 1.52    | 0.30            | 1514                                   | 21          | 1587                                    | 40  | 1685                                      | 45     | 90      |
| AY9170315-90 | 93      | 5324                                    | 1.7  | 3.48196                                 | 5.11  | 0.24256                                 | 4.07    | 0.80            | 1400                                   | 51          | 1523                                    | 40  | 1699                                      | 28     | 82      |
| AY9170315-29 | 122     | 5092                                    | 1.3  | 4.10027                                 | 7.59  | 0.28527                                 | 6.28    | 0.83            | 1618                                   | 89          | 1654                                    | 60  | 1701                                      | 39     | 95      |
| AY9170315-85 | 280     | 21336                                   | 0.5  | 4.28567                                 | 5.11  | 0.29825                                 | 4.98    | 0.98            | 1683                                   | 73          | 1691                                    | 41  | 1701                                      | 10     | 99      |
| AY9170315-17 | 39      | 811                                     | 1.6  | 3.36320                                 | 15.48 | 0.23384                                 | 5.72    | 0.37            | 1355                                   | 70          | 1496                                    | 114 | 1702                                      | 132    | 80      |
| AY9170315-57 | 96      | 16245                                   | 2.1  | 4.31576                                 | 2.49  | 0.29803                                 | 1.74    | 0.70            | 1682                                   | 26          | 1696                                    | 20  | 1715                                      | 16     | 98      |
| AY9170315-81 | 124     | 11288                                   | 1.7  | 4.30078                                 | 3.69  | 0.29565                                 | 2.68    | 0.73            | 1670                                   | 39          | 1694                                    | 30  | 1723                                      | 23     | 97      |
| AY9170315-25 | 104     | 7744                                    | 1.7  | 4.36159                                 | 3.92  | 0.29897                                 | 2.75    | 0.70            | 1686                                   | 41          | 1705                                    | 32  | 1728                                      | 26     | 98      |
| AY9170315-68 | 49      | 4246                                    | 2.1  | 4.37748                                 | 5.17  | 0.29914                                 | 2.43    | 0.47            | 1687                                   | 36          | 1708                                    | 42  | 1734                                      | 42     | 97      |
| AY9170315-70 | 254     | 8054                                    | 1.2  | 3.47238                                 | 3.53  | 0.23604                                 | 2.86    | 0.81            | 1366                                   | 35          | 1521                                    | 27  | 1744                                      | 19     | 78      |
| AY9170315-24 | 89      | 4659                                    | 1.9  | 4.56429                                 | 4.96  | 0.30298                                 | 3.74    | 0.75            | 1706                                   | 56          | 1743                                    | 41  | 1787                                      | 30     | 95      |
| AY9170315-28 | 43      | 2010                                    | 1.6  | 2.81715                                 | 13.05 | 0.18309                                 | 5.01    | 0.38            | 1084                                   | 50          | 1360                                    | 93  | 1826                                      | 109    | 59      |
| AY9170315-61 | 102     | 13486                                   | 2.2  | 4.76500                                 | 8.91  | 0.30466                                 | 8.33    | 0.94            | 1714                                   | 124         | 1779                                    | 72  | 1855                                      | 28     | 92      |
| AY9170315-2  | 271     | 18445                                   | 8.7  | 4.80024                                 | 2.79  | 0.30286                                 | 2.30    | 0.83            | 1706                                   | 34          | 1785                                    | 23  | 1879                                      | 14     | 91      |
| AY9170315-95 | 1131    | 25365                                   | 11.0 | 4.59710                                 | 3.12  | 0.28848                                 | 3.03    | 0.97            | 1634                                   | 44          | 1749                                    | 26  | 1889                                      | 7      | 86      |
| AY9170315-22 | 63      | 8373                                    | 1.2  | 5.36226                                 | 4.07  | 0.32944                                 | 2.43    | 0.60            | 1836                                   | 39          | 1879                                    | 34  | 1927                                      | 29     | 95      |
| AY9170315-21 | 57      | 6752                                    | 0.7  | 5.52704                                 | 7.73  | 0.33505                                 | 6.22    | 0.81            | 1863                                   | 100         | 1905                                    | 64  | 1951                                      | 41     | 95      |
| AY9170315-58 | 55      | 6324                                    | 1.4  | 5.53059                                 | 3.58  | 0.32696                                 | 2.82    | 0.79            | 1824                                   | 45          | 1905                                    | 30  | 1996                                      | 20     | 91      |
| AY9170315-35 | 265     | 16749                                   | 3.0  | 6.96732                                 | 3.58  | 0.33647                                 | 3.29    | 0.92            | 1870                                   | 53          | 2107                                    | 31  | 2348                                      | 12     | 80      |
| AY9170315-55 | 191     | 22268                                   | 1.6  | 8.80751                                 | 8.62  | 0.41443                                 | 8.59    | 1.00            | 2235                                   | 160         | 2318                                    | 76  | 2392                                      | 6      | 93      |
| AY9170315-99 | 119     | 8804                                    | 2.7  | 9.40897                                 | 4.52  | 0.43222                                 | 3.06    | 0.68            | 2316                                   | 59          | 2379                                    | 41  | 2433                                      | 28     | 95      |
| AY9170315-56 | 149     | 22710                                   | 0.6  | 10.39014                                | 2.67  | 0.46740                                 | 2.62    | 0.98            | 2472                                   | 54          | 2470                                    | 25  | 2469                                      | 4      | 100     |

<sup>206</sup>Pb/<sup>204</sup>Pb is measured ratio.

All uncertainties are at the 1s level and include only random (measurement) errors.

U concentration and U/Th have uncertainties of  $\sim 25\%$ .

Decay constants:  ${}^{235}U = 9.8485 \times 10^{-10}$ .  ${}^{238}U = 1.55125 \times 10^{-10}$ ,  ${}^{238}U/{}^{235}U = 137.88$ .

Isotope ratios are corrected for Pb/U fractionation by comparison with standard zircon with an age of  $564 \pm 4$  Ma (2s).

Initial Pb composition interpreted from Stacey and Kramers (1975), with uncertainties of 1.0 for <sup>206</sup>Pb/<sup>204</sup>Pb and 0.3 for <sup>207</sup>Pb/<sup>204</sup>Pb.

Table2.Ion microprobe data analysis in situ monazite dates from<br/>AY091403-(8a) sample

| Age (Ma) <sup>204</sup> Pb corrected | <sup>208</sup> Pb/ <sup>232</sup> Th 1s.e. | sample no.                     |
|--------------------------------------|--------------------------------------------|--------------------------------|
| 10.32                                | 2.83                                       | 8a-1@1.ais                     |
| 10.03                                | 0.813                                      | 8a-3@2.ais                     |
| 10.13                                | 2.35                                       | 8a-4.ais                       |
| 9.825                                | 2.7                                        | 8a-5@4.ais                     |
| 13.38                                | 7                                          | g2-m11.ais                     |
| Weighted mean age                    |                                            | MSWD                           |
|                                      |                                            | (Age - weighted                |
| $1/s^{2}$                            | Age*1/ $s^2$                               | mean age) <sup>2</sup> / $s^2$ |
| 0.124861092                          | 1.28856647                                 | 0.007321711                    |
| 1.512930258                          | 15.17469049                                | 0.003463373                    |
| 0.181077411                          | 1.834314169                                | 0.000492549                    |
| 0.137174211                          | 1.347736626                                | 0.008769656                    |
| 0.020408163                          | 0.273061224                                | 0.222535204                    |
| sum                                  | sum                                        | sum                            |
| 1.976451136                          | 19.91836898                                | 0.242582494                    |
| Weighted mean age (Ma)               | 1 s.e.                                     | MSWD                           |
| 10.0778454                           | 0.002520533                                | 0.060645623                    |

if we know the relative magnitude of EHWC in the two regions. As erosion is directly related to precipitation, which currently decreases westward along the Himalaya<sup>56</sup>, we may infer the magnitude of erosion in the eastern Himalaya to be greater than that in the central and western Himalaya, if the current precipitation pattern persisted in the Neogene. This assumption leads to the following inequality:

EHMC (eastern Himalaya) > EHMC (central Himalaya). (2)

#### Because

and

MS (eastern Himalaya) > MS (central Himalaya), (5)

CURRENT SCIENCE, VOL. 90, NO. 2, 25 JANUARY 2006

we have

$$\Gamma S$$
 (eastern Himalaya) > TS (central Himalaya). (6)

That is, the total amount of shortening in the eastern Himalaya is greater than that in the central Himalaya. Another implicit assumption in the above inference is that the shortening in the central and eastern Tethyan Himalaya is constant along strike, which is supported by early studies<sup>49,50</sup>.

Despite the high uncertainties in our estimates of the total amount of crustal shortening across the Arunachal Himalaya, there is little doubt that the Himalayan orogen did not develop in a symmetric manner, in which crustal shortening decreases laterally from the central to the east and west. The easternmost part of the Himalayan orogen must have significantly more crustal shortening than the western Himalaya. Our interpreted westward decrease in crustal shortening supports the early inference by Guillot et al.<sup>57</sup>, who relate the variation of shortening to the westward decrease in convergence rate between India and Asia<sup>13,14</sup>. Future research may expand our study by examining how strain is distributed in the whole Himalayan-Tibetan orogen in response to the relative Cenozoic rotation between India and Asia. Recognition of an MCT tectonic window inside the eastern Himalaya suggests that (1) the MCT is broadly folded, a case widely recognized elsewhere in the Himalaya and has been particularly noted in western Bhutan<sup>16</sup> but has been uncertain in the Arunachal Himalaya (c.f. refs 26 and 30), and (2) the GHC is quite thin (i.e. <7-10 km) when projecting the STD<sup>4</sup> from easternmost Bhutan onto our cross-section in western Arunachal.

Detrital zircon analysis indicates that the Lesser Himalayan metasedimentary sequence (the Rupa Group) must be younger than 950 Ma. The age relationship between the Rupa Group and the Bomdila orthogneiss is currently unclear. However, radiometric dating of the augen gneiss in the near future will resolve this problem. That is, we will know whether the Bomdila gneiss was the basement of the Rupa Group or it has intruded into the metasedimentary sequence.

#### Conclusion

Geologic mapping across the westernmost Arunachal Himalaya reveals the presence of an MCT window and a prominent north-trending, active rift that cuts and offsets the MCT.

Detrital zircon analysis indicates that the Lesser Himalayan metasedimentary sequence (the Rupa Group) must be younger than 950 Ma.

The MCT in the Arunachal Himalaya was active at about 10 Ma, but its initiation and termination ages remain unknown.

The GHC in the Arunachal Himalaya has been thickened by ductile thrusting as represented by the Zimithang ductile thrust zone mapped by this study. The total amount of shortening across the Arunachal Himalaya is at least 500 km. This magnitude of shortening is definitely greater than that estimated in the northern Pakistan Himalaya around 200 km and probably also exceeds the amount of shortening across the central Himalaya in Nepal. The apparent westward decrease in the magnitude of crustal shortening along the Himalayan orogen may result from relative rotation of India with Asia during the Indo-Asian collision and suggests that the development of the Himalayan orogen on a timescale of tens of million years is asymmetric.

- Gansser, A., *The Geology of the Himalayas*, Wiley Interscience, New York, 1964.
- Searle, M. P. Waters, D. J., Dransfield, M. W., Stephenson, B. J., Walker, C. B., Walker, J. D. and Rex, D. C., Thermal and mechanical models for the structural and metamorphic evolution of the Zanskar High Himalaya. In *Continental Tectonics* (eds Mac-Niocaill, C. and Ryan, P. D.), Geological Society of London Special Publication, 1999, vol. 164, pp. 139–156,.
- DeCelles, P. G., Robinson, D. M., Quade, J., Ojha, T. P., Garzione, C. N., Copeland, P. and Upreti, B. N., Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. *Tectonics*, 2001, 20, 487–509.
- Grujic, D., Hollister, L. S. and Parrish, R.R., Himalayan metamorphic sequence as an orogenic channel: insight from Bhutan. *Earth Planet. Sci. Lett.*, 2002, **198**, 177–191.
- Steck, A., Geology of the NW Indian Himalaya. Eclogae Geol. Helv., 2003, 96, 147–213.
- DiPietro, J., Pogue, K. R., Hussain, A. and Ahmad, I., Geological map of the Indus syntaxis and surrounding area, northwest Himalaya, Pakistan. In *Himalaya and Tibet: Mountain Roots to Mountain Tops* (eds Macfarlane, A., Sorkhabi, R. B. and Quade, J.), Geological Society of America Special Papers, Boulder, Colorado, 1999, vol. 328, pp. 159–178.
- Pogue, K. R., Hylland, M. D., Yeats, R. S., Khattak, W. U. and Hussain, A., Stratigraphic and structural framework of Himalayan foothills, northern Pakistan. In *Himalaya and Tibet: Mountain Roots to Mountain Tops* (eds Macfarlane, A., Sorkhabi, R. B. and Quade, J.), Geological Society of America Special Papers, Boulder, Colorado, 1999, vol. 328, pp. 257–274.
- Le Fort, P., Evolution of the Himalaya. In *The Tectonic Evolution* of Asia (eds Yin, A. and Harrison, T. M.), Cambridge University Press, New York, 1996, pp. 95–106.
- Thakur, V. C., Structure of the Chamba nappe and position of the Main Central Thrust in Kashmir Himalaya. J. Asian Earth Sci., 1998, 16, 269–282.
- DiPietro, J. A. and Pogue, K. R., Tectonostratigraphic subdivisions of the Himalaya: A view from the west. *Tectonics*, 2004, 23, doi: 10.1029/2003TC001554.
- 11. Yin, A., Tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. *Earth-Sci. Rev.*, in press.
- Steck, A., Geology of the NW Indian Himalaya. Eclogae Geol. Helv., 2003, 96, 147–213.
- Patriat, P. and Achache, J., India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. *Nature*, 1984, **311**, 615–621.
- Dewey, J. F., Cande, S. and Pitman, W. C., Tectonic evolution of the India–Eurasia collision zone. *Eclogae Geol. Helv.*, 1989, 82, 717–734.
- Gansser, A., Geology of the Bhutan Himalaya, Birkhäuser Verlag, Boston, 1983.
- 16. Bhargava, O. N., *The Bhutan Himalaya: A Geological Account*, Geological Survey of India Special Publication, 1995, vol. 39.
- Godwin-Austin, H. H., Notes on the geology of the Dafla Hills, Assam, lately visited by the Force under Brigadier-General Stafford, C.S. J. Asiat. Soc. Bengal, 1875, 44, 34–41.

- 18. La Touche, T. D., Notes on the geology of the Aka Hills, Assam. *Rec. Geol. Surv. India*, 1885, **18**, 121–124.
- MaClaren, J. M., Geology of Upper Assam. *Rec. Geol. Surv. India*, 1904, **31**, 179–204.
- Brown, C. J., A geologic reconnaissance through the Dihang Valley, being the geological result of the Abor Expedition, 1911–12. *Rec. Geol. Surv. India*, 1912, 42, 231–264.
- Jain, A. K., Thakur, V. C. and Tandon, S. K., Stratigraphy and structure of the Siang district, Arunachal (NEFA) Himalaya. *Hi-malayan Geol.*, 1974, 4, 28–60.
- Verma, P. K. and Tandon, S. K., Geological observations in parts of Kameng district, Arunachal Pradesh (NEFA). *Himalayan Geol.*, 1976, 6, 259–286.
- Acharyya, S. K., Ghosh, S. C., Ghosh, R. N. and Shah, S. C., The Gondwana Group and associated marine sequences of Arunachal Pradesh (NEFA), Eastern Himalaya. *Himalayan Geol.*, 1975, 5, 60–80.
- 24. Jangpangi, B. S., Stratigraphy and tectonics of parts of eastern Bhutan. *Himalayan Geol.*, 1974, **4**, 117–136.
- Thakur, V. C., Tectonic zonation and regional framework of eastern Himalaya. Sci. Terre, Mem., 1986, 47, 347–360.
- Singh, S. and Chowdhary, P. K., An outline of the geological framework of the Arunachal Himalaya. J. Himalayan Geol., 1990, 1, 189–197.
- Acharyya, S. K., The Cenozoic foreland basin and tectonics of the eastern sub-Himalaya: Problems and prospects. *Himalayan Geol.*, 1994, 15, 3–21.
- Acharyya, S. K., Structural framework and tectonic evolution of the eastern Himalaya. *Himalayan Geol.*, 1980, 10, 412–439.
- Acharyya, S. K., Thrust tectonics and evolution of domes and the syntaxis in eastern Himalaya, India. J. Nepal. Geol. Soc., 1998, 18, 1–17.
- 30. Kumar, G., *Geology of Arunachal Pradesh*, Geological Society of India, Bangalore, 1997.
- 31. Thakur, V. C. and Jain, A. K., Tectonics of the region of eastern Himalayan syntaxis. *Curr. Sci.*, 1974, **43**, 783–785.
- 32. Geological Survey of India, Geological and mineral map of NE India at a scale of 1 : 2 M. 1998.
- Srinivasan, V., Litho-stratigraphy and structure of the low-grade metasedimentaries in western part of the Arunachal Pradesh. *Hi-malayan Geol.*, 1999, 20, 53–60.
- 34. Tripathi, C., Dungrakoti, B. D., Jains, L. S., Kaura, S. C., Basu, S. and Laxmipathi, N. S., Geology of Dirange–Doimara area, Kameng District, Arunachal Pradesh with special reference to structure and tectonics. *Himalayan Geol.*, 1982, 10, 353–365.
- Krishnan, M. S., General report of the geological survey of India for year 1953. *Rec. Geol. Surv. India*, 1958, 87, 46–47.
- Bhalla, J. K. and Bishui, P. K., Geochronology and geochemistry of granite emplacement and metamorphism in northeastern Himalaya. *Rec. Geol. Surv. India*, 1989, **122**, 18–20.
- Dikshitulu, G. R., Pandey, B. K., Krishna, V. and Dhana, R., Rb-Sr systematics of granitoids of the Central Gneissic Complex, Arunachal Himalaya: Implications on tectonics, stratigraphy, and source. J. Geol. Soc. India, 45, 51–56.
- Parrish, R. R. and Hodges, K. V., Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. *Geol. Soc. Am. Bull.*, 1996, **108**, 904–911.
- DeCelles, P. G., Gehrels, G. E., Quade, J., LaReau, B. and Spurlin, M., Tectonic implications of U–Pb zircon ages of the Himalayan orogenic belt in Nepal. *Science*, 2000, 288, 497–499.
- Lovera, O. M., Grove, M., Kimbrough, D. L. and Abbott, P. L., A method for evaluating basement exhumation histories from closure age distributions of detrital minerals. *J. Geophys. Res.*, 1999, **104**, 29,419–29,438.
- Harrison, T. M., Grove, M., McKeegan, K. D., Coath, C. D., Lovera, O. M. and Le Fort, P., Origin and episodic emplacement of the Manaslu intrusive complex, central Himalaya. *J. Petrol.*, 1999, 40, 3–19.
- 42. Harrison, T. M., McKeegan, K. D. and LeFort, P., Detection of inherited monazite in the Manaslu leucogranite by Pb-208/Th-232

ion microprobe dating – Crystallization age and tectonic implications. *Earth Planet. Sci. Lett.*, 1995, **133**, 271–282.

- Harrison, T. M., Ryerson, F. J., LeFort, P., Yin, A., Lovera, O. M. and Catlos, E. J., A Late Miocene–Pliocene origin for the Central Himalayan inverted metamorphism. *Earth Planet. Sci. Lett.*, 1997, 146, E1–E8.
- 44. Catlos, E. J., Harrison, T. M., Kohn, M. J., Grove, M., Ryerson, F. J., Manning, C. E. and Upreti, B. N., Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. J. Geophys. Res., 2001, 106, 16177–16204.
- Coward, M. P. and Butler, R. H. W., Thrust tectonics and the deep structure of the Pakistan Himalaya. *Geology*, 1985, 13, 417–420.
- Corfield, R. L. and Seale, M. P., Crustal shortening across the north Indian continental margin, Ladakh, India. In *Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya* (eds Khan, M. A. *et al.*), The Geological Society Special Publication, 2000, vol. 170, pp. 395–410.
- Wiesmayr, G. and Grasemann, B., Eohimalayan fold and thrust belt: Implications for the geodynamic evolution of the NW-Himalaya (India). *Tectonics*, 2002, 2, 1058.
- Srivastava, P. and Mitra, G., Thrust geometries and deep structure of the outer and lesser Himalaya, Kumoan and Garhwal (India): Implications for evolution of the Himalayan fold and thrust belt. *Tectonics*, 1994, **13**, 89–109.
- Ratschbacher, L., Frisch, W., Liu, G. and Chen, C., Distributed deformation in southern and western Tibet during and after the India– Asia collision. J. Geophys. Res., 1994, 99, 19,817–19,945.
- Murphy, M. A. and Yin, A., Structural evolution and sequence of thrusting in the Tethyan fold-thrust belt and Indus-Yalu suture zone, southwest Tibet. *Geol. Soc. Am. Bull.*, 2003, 115, 21–34.
- Schelling, D. and Arita, K., Thrust tectonics, crustal shortening, and the structure of the far-eastern Nepal, Himalaya. *Tectonics*, 1991, 10, 851–862.
- 52. Lavé, J. and Avouac, J. P., Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J. Geophys. *Res.*, 2000, **105**, 5735–5770.
- 53. Sharma, B. and Ratnam, C., Use of gravity data to resolve complex fold structure in the sub-Himalayan region of upper Assam. *Himalayan Geol.*, 1974, **4**, 61–73.
- 54. Dahlstrom, C. D. A., Balanced cross-sections. *Can. J. Earth Sci.*, 1969, **6**, 743–757.
- 55. Laubscher, J. P., Ein Fernschubhypothese der Jurafaltung. *Ecologae Geol. Helv.*, 1961, **54**, 221–282.
- Finlayson, D. P., Montgomery, D. R. and Hallet, B., Spatial coincidence of rapid inferred erosion with young metamorphic massifs in the Himalayas. *Geology*, 2002, **30**, 219–222.
- 57. Guillot, S., Cosca, M., Allemand, P. and LeFort, P., Contrasting metamorphic and geochronologic evolution along the Himalayan belt. In *Himalaya and Tibet: Mountain Roots to Mountain Tops* (eds Macfarlane, A., Sorkhabi, R. B. and Quade, J.), Geological Society of America Special Papers, Boulder, Colorado, 1999, vol. 328, pp. 117–128.
- Ding, L., Zhong, D. L., Yin, A., Kapp, P. and Harrison, T. M., Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). *Earth Planet. Sci. Lett.*, 2001, **192**, 423–438.
- 59. Tripathi, C. and Kaura, S. C., A note on the metamorphites of Arunachal Pradesh. *Geol. Surv. India Spec. Publ.*, 1998, **22**, 45–52.
- Yin, A. and Harrison, T. M., Geologic evolution of the Himalayan– Tibetan orogen. Annu. Rev. Earth Planet. Sci., 2000, 28, 211–280.
- Gehrels, G. E., DeCelles, P. G., Martin, A., Ojha, T. P., Pinhassi, G. and Upreti, B. N., Initiation of the Himalayan orogen as an early Paleozoic thin-skinned thrust belt. *GSA Today*, 2003, **13**, 4–9.

ACKNOWLEDGEMENTS. This work was supported by a grant from UCLA to A.Y., a faculty development grant to T.K.K. and a travel grant from SAP (UGC) to C.S.D. The ion-microprobe facilities at UCLA are partially supported by a grant from the Instrumentation and Facilities Program, Division of Earth Sciences, US National Science Foundation. Received 20 December 2004; revised accepted 5 October 2005