
INTRODUCTION
The Pelona, Orocopia, Rand, Portal Ridge, and Sierra de Salinas

Schists make up a distinctive, graywacke-dominated, intermediate-high-
pressure assemblage that is thought to underlie a large region of southwest-
ern North America (Fig. 1A; Haxel and Dillon, 1978; Ehlig, 1981). The
schists were metamorphosed beneath middle crustal rocks of the
Cordilleran Mesozoic magmatic arc along the Late Cretaceous to early
Tertiary Vincent–Chocolate Mountains thrust system (Haxel and Dillon,
1978). Little of the original thrust is preserved, however, because of over-
printing by low-angle normal faults (Haxel et al., 1985; Jacobson et al.,
1996). Most workers consider the schists to be part of the Franciscan sub-
duction complex that underplated North American crust during shallow-
inclination subduction related to the Laramide orogeny (Burchfiel and
Davis, 1981; Crowell, 1981; Hamilton, 1987; Malin et al., 1995; Jacobson
et al., 1996). In contrast, Barth and Schneiderman (1996) and Saleeby
(1997) viewed the schist as a correlative of the Great Valley Group (Fig. 1A),
the Vincent–Chocolate Mountains thrust marking the boundary between arc
and forearc. Haxel and Dillon (1978) and Ehlig (1981) alternatively argued
that the schist formed in a suture zone between North America and an out-
board microcontinent, although we consider this model unlikely (Barth and
Schneiderman, 1996; Jacobson et al., 1996).

Knowledge of the depositional age and provenance of the schists is
key to understanding their tectonic significance. For the Pelona and
Orocopia Schists, which make up the southern half of the terrane, the proto-
liths must be older than the ca. 60–65 Ma age of metamorphism (Jacobson,
1990). In the more northern Rand Mountains and Salinian block, a separate
constraint is provided by ca. 79–85 Ma plutons that clearly intrude the

schists (Silver and Nourse, 1986; James and Mattinson, 1988). More ques-
tionable, however, are inferences that the schist protoliths have a minimum
age of 163 ± 2 Ma (Mukasa et al., 1984) or 131 Ma (James and Mattinson,
1988). These latter determinations are based on ages of igneous bodies
whose contact relationships with the schists are ambiguous (Haxel and
Tosdal, 1986; Ross, 1989). The 163 Ma postulated minimum age is partic-
ularly significant, because it implies that the protoliths of the schists are too
old to correlate with either the Franciscan Complex or Great Valley Group
(Tosdal, 1984). To help resolve this conflict, we determined U-Pb ages of
detrital zircons contained within the schists. Here we describe preliminary
results for three widely separated samples of Pelona and Orocopia Schists
that provide unequivocal evidence that the sampled part of the terrane is no
older than latest Cretaceous. The data further indicate that the protoliths
were derived from a source area similar to the Mojave region and/or central
to eastern Transverse Ranges.

SAMPLES AND U-Pb ZIRCON RESULTS
Locations of the analyzed samples are shown in Figure 1B on a pre-

San Andreas palinspastic reconstruction. Included are representatives of
Orocopia Schist from the Gavilan Hills (UG1417A) and Pelona Schist from
Bouquet Canyon in the Sierra Pelona (98-241) and Blue Ridge in the east-
ern San Gabriel Mountains (98-240). The latter is likely a slice of the Sierra
Pelona body offset by the Punchbowl fault (Ehlig, 1981, Fig. 10.4). All three
samples were metamorphosed in the lowermost amphibolite facies at
20–35 km depth (Graham and Powell, 1984; Jacobson, 1995).

The University of California, Los Angeles, CAMECA ims 1270 ion
microprobe was used to determine U-Pb ages for 34–45 zircons from each
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of the three samples. The methods employed are described in Appendix 11

(see also Quidelleur et al., 1997). Zircons were hand-selected from heavy-
mineral concentrates derived from each of the samples after application of
conventional crushing, density, and magnetic methods. The grains chosen
were generally morphologically simple prisms that exhibited minor to dis-
tinct abrasion of crystal faces characteristic of sedimentary transport.

Results of the analyses are listed in Tables 1–3 (see footnote 1) and
plotted on 207Pb/235U vs. 206Pb/238U concordia diagrams in Figure 2 and in
histograms of 206Pb/238U ages in Figure 3 (A–C). The single most striking
characteristic of the results is the abundance of Late Cretaceous ages, many
of which are as young as 70–80 Ma. Two of the samples (UG1417A and
98-241) display strongly bimodal age distributions (Figs. 2 and 3). For
example, nearly three-quarters of the 206Pb/238U ages in sample UG1417A
are between 70 and 100 Ma, whereas most of the remaining values are
either ca. 1.7 Ga or yield upper intercepts near this age when projecting
from 100 Ma. Sample 98-241 shows a broadly similar distribution, but with
a higher proportion of  pre-100 Ma dates and a greater degree of discor-
dance. Zircons from the third sample (98-240) are mostly Cretaceous,
although skewed to somewhat older ages (80–125 Ma) than the Cretaceous
fractions from the other two samples. Another major distinction of sample
98-240 is that only two Precambrian grains were identified. All three sam-
ples include a small number of Jurassic and/or Triassic grains.

AGE AND PROVENANCE OF THE SCHIST
The distribution of U-Pb zircon ages obtained in this study is most

consistent with the derivation of the schists’protoliths from a middle to Late
Cretaceous batholith intruded into dominantly ca. 1.7 Ga crystalline base-
ment. The youngest detrital zircon ages indicate maximum depositional
ages for the three samples of 70–80 Ma, substantially different from the 163
and 131 Ma minimum ages proposed by Mukasa et al. (1984) and James
and Mattinson (1988). It is conceivable that all these age inferences are cor-
rect and that accumulation of the protolith occurred over a time span of
90 m.y. or longer. However, inasmuch as the igneous units dated by Mukasa
et al. (1984) and James and Mattinson (1988) do not definitely intrude the
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Figure 1. A: Distribution of Pelona and related schists on schematic base showing rocks related to late Mesozoic–early Tertiary c onvergent-margin
tectonics. Abbreviations: CH—Chocolate Mountains, CTR—central Transverse Ranges, ETR—eastern Transverse Ranges, GH—Gavilan Hills,
OR—Orocopia Mountains, PR—Portal–Ritter Ridge, RA—Rand Mountains, SE—San Emigdio Mountains, SG—San Gabriel Mountains, SP—
Sierra Pelona, SS—Sierra de Salinas,WTR—western Transverse Ranges, GF—Garlock fault, SAF—San Andreas fault, SNF—Sur-Nacimiento faul t.
Contacts modified from Page (1981), Champion et al. (1984), and Haxel and Dillon (1978). B: Sample locations and geochronologic data  for schists
shown on pre-San Andreas reconstruction (modified from Haxel and Dillon, 1978). Ages from Ehlig (1981), Silver and Nourse (1986), J ames and
Mattinson (1988), and Jacobson (1990).

1GSA Data Repository item 200024, Appendixes 1 and 2 and Tables 1–3, is
available on request from Documents Secretary, GSA, P.O. Box 9140, Boulder, CO
80301-9140, editing@geosociety.org, or at www.geosociety.org/pubs/drpint.htm.

Figure 2. Concordia diagrams of detrital zircon ages from
three analyzed samples. Ellipses indicate one standard error.
Insets show detail for ages in range 0 Ma to ca. 180 Ma.



schists, sedimentation could also have occurred solely within the Late Cre-
taceous. Evidence that this is the case is the remarkably uniform composi-
tion of the schists (Ross, 1976; Haxel and Dillon, 1978), which contrasts
sharply with the pronounced variation in composition with age exhibited by
the Upper Jurassic to Upper Cretaceous Great Valley Group and Franciscan
Complex (Dickinson et al., 1982; Ingersoll, 1983; Linn et al., 1992). Notably,
those parts of the Great Valley Group and Franciscan Complex composi-
tionally most similar to the schists (high sand/shale ratio) are Late Creta-
ceous age (Smith et al., 1979; Ingersoll, 1983).

The preponderance of zircon ages younger than 80 Ma (Fig. 2) places
an important constraint on the source area of the schists. Although plutons
younger than about 80 Ma are uncommon within the Sierra Nevada
batholith (Fig. 3A; Bateman, 1992) and absent from the Peninsular Ranges
batholith (Fig. 3B; Silver and Chappell, 1988), intrusions of this age char-
acterize the Mojave Desert and central to eastern Transverse Ranges of
southern California (Fig. 3C; Foster et al., 1989; Walker et al., 1990; Barth
et al., 1995). The Mojave Desert and Transverse Ranges also provide good
matches for the schists in terms of the pre-Cretaceous part of the age distri-
bution (Figs. 2 and 3; Wooden and Miller, 1990).

IMPLICATIONS FOR RATE OF THRUSTING
Rb-Sr and 40Ar/ 39Ar ages from metamorphic white mica and horn-

blende from the Pelona and Orocopia Schists in the San Gabriel, Orocopia,
and Chocolate Mountains indicate a minimum metamorphic age of ca.
60–65 Ma (Fig. 1B; Ehlig, 1981; Jacobson, 1990). This constrains the
interval between deposition (<70–80 Ma) and maximum burial of the
Pelona and Orocopia Schists to at most 10–15 m.y. The 20–35 km depth of
peak-grade recrystallization inferred for these rocks (Graham and Powell,
1984; Jacobson, 1995) thus requires a minimum burial rate of ~1–3 mm/yr.
Assuming a thrust dip of 15° (Grove and Lovera, 1996), our results indicate
a minimum slip rate prior to 65 Ma of ~4–12 mm/yr. If the movement was

continuous between 75 and 50 Ma, this slip rate would imply that the
Vincent–Chocolate Mountains thrust accommodated ~250 km of displace-
ment during the interval, which corresponds to a horizontal component of
convergence of ~200 km. Additional data of this type may assist in selecting
between contrasting models for the evolution of the fault (e.g., Barth and
Schneiderman, 1996; Jacobson et al., 1996).

REGIONAL VARIATION WITHIN THE SCHISTS
The 70–80 Ma maximum depositional age for the schists’ protoliths

determined in this study is based on samples from the southern half of the
terrane (Fig. 1B). Available data indicate that the protoliths of the more
northern schists must be somewhat older, as demonstrated by their mica and
hornblende 40Ar/ 39Ar ages of 72–82 Ma (Fig. 1B; Jacobson, 1990) and clear
intrusive contacts with plutons dated as about 79–85 Ma (Silver and
Nourse, 1986; James and Mattinson, 1988). An age difference between
northern and southern parts of the terrane has long been suspected (Burch-
fiel and Davis, 1981), and Barth and Schneiderman (1996) proposed that it
was due to the southward-migrating point of impingement between the Far-
allon–North America trench and an obliquely subducting oceanic plateau.
Whatever the origin, the spatial variation in age seems opposite to that pre-
dicted for large-scale northward strike-slip passage of exotic terranes along
the California margin during the Late Cretaceous to early Tertiary, such as
that proposed in the Baja British Columbia hypothesis (Cowan et al., 1997).

CONCLUSIONS
On the basis of our results and those of previous workers, we conclude

that (1) at least part, if not all, of the schists’protoliths were deposited in the
Late Cretaceous and were derived largely from the Late Cretaceous
granitoids and Proterozoic host rocks that characterize the Mojave Desert
and Transverse Ranges; (2) the protolith age is consistent with the schists
being related to either the Great Valley Group or the Franciscan Complex;
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Figure 3. Histogram plots of detrital zircon ages from three analyzed samples of Pelona and Orocopia Schists (A–C) and
inferred crystallization ages of Cretaceous and older igneous rocks in Peninsular Ranges (D), Mojave Desert and Transverse
Ranges (E), and Sierra Nevada (F). Sources of data for D–F are listed in Appendix 2 (see footnote 1). Insets show detail for
ages in range 50–150 Ma.



(3) the schists were thrust beneath western North America at a minimum
rate of ~4–12 mm/yr; and (4) emplacement of the schists propagated south-
ward along the margin, contrary to the northward migration of deformation
that might be expected from the Baja British Columbia hypothesis.
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