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Methane-Consuming Archaea
Revealed by Directly Coupled

Isotopic and Phylogenetic
Analysis

Victoria J. Orphan,1* Christopher H. House,2*† Kai-Uwe Hinrichs,3

Kevin D. McKeegan,4 Edward F. DeLong1†

Microorganisms living in anoxic marine sediments consume more than 80% of
the methane produced in the world’s oceans. In addition to single-species
aggregates, consortia of metabolically interdependent bacteria and archaea are
found in methane-rich sediments. A combination of fluorescence in situ hy-
bridization and secondary ion mass spectrometry shows that cells belonging to
one specific archaeal group associated with the Methanosarcinales were all
highly depleted in 13C (to values of –96‰). This depletion indicates assimi-
lation of isotopically light methane into specific archaeal cells. Additional
microbial species apparently use other carbon sources, as indicated by signif-
icantly higher 13C/12C ratios in their cell carbon. Our results demonstrate the
feasibility of simultaneous determination of the identity and the metabolic
activity of naturally occurring microorganisms.

Microbes critically impact global geochemi-
cal cycles. Although the general ecological
importance of microbial activity is well rec-
ognized, the identity and involvement of mi-
crobes in specific biogeochemical cycles are
often poorly understood. For example, the
anaerobic oxidation of methane (AOM) is a
widespread and geochemically well docu-
mented process [e.g., (1)], yet very little is
known about the physiology, biochemistry,
and identity of the microbes involved. One
reason for this is that often the ecologically

relevant microorganisms are difficult to iso-
late in pure culture. Approaches that combine
phylogenetic and stable isotope analyses have
considerable potential for linking microbial
diversity with in situ activity (2–4). Recent

studies that combine phylogenetic surveys of
ribosomal RNAs (rRNAs) with structural and
stable isotopic analyses of lipids have re-
vealed new information about methane-oxi-
dizing microbes in anoxic marine sediments
(3, 5, 6). However, the stable isotopic and
phylogenetic methods used in these studies
were uncoupled, so identification of the spe-
cific microbes mediating AOM is based
mainly on indirect lines of evidence.

Here, we report a cultivation-independent
study of marine microbial assemblages in
anoxic methane-rich sediments that com-
bined microbial cell identification using ribo-
somal RNA-targeted fluorescent in situ hy-
bridization (FISH) (7) with secondary ion
mass spectrometry (SIMS) (8). After rRNA-
targeted probes were applied to identify mi-
crobial cells, the stable isotope composition
of the identified cells was determined by
using SIMS. Coupled FISH-SIMS provided a
measure of the stable carbon isotope compo-
sition of individual phylogenetically identi-
fied cell aggregates. Uncultured, naturally oc-
curring microbial cells that utilize methane as
the source of cell carbon could therefore be
identified unambiguously.

Previous studies suggested that cell aggre-
gates of archaea belonging to the Methano-
sarcinales (ANME-2 group), surrounded by
sulfate-reducing bacteria related to the De-
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Table 1. Carbon isotopic compositions (versus PDB) and source assignments of selected extracted
archaeal ether lipids and bacterial fatty acids (FAs). SRB, sulfate-reducing bacteria.

Compound
Eel River Basin, 3 to 5 cm Santa Barbara hydrocarbon seep

d13C (‰) Source assignment d13C (‰) Source assignment

Archaeol 2104.1 ANME-2 Traces/not analyzed Archaea
sn-2-Hydroxyarchaeol 2107.6 ANME-2 Traces/not analyzed Archaea
n-C14:0 FA 269.1 SRB 222.7 Algae, bacteria
i-C15:0 FA 251.3 SRB, other bacteria 225.4 Bacteria mainly
ai-C15:0 FA 251.9 SRB, other bacteria 219.0 Bacteria mainly
n-C16 :1(v7) FA* 262.8 SRB 226.0 Algae, bacteria
n-C16 :1(v5) FA* 276.1 SRB 221.2 Algae, bacteria
n-C16:0 FA 244.1 SRB, other bacteria,

algae
220.3 Algae, bacteria

10-Me-C16:0 FA 269.4 SRB Not present 2

*Double-bond positions were determined from nearby samples with almost congruent fatty acid distributions (24) and
refer only to the sample from the Eel River Basin.
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sulfosarcina, were involved in AOM (5, 6).
To test this hypothesis, microbial cell aggre-
gates were recovered from marine sediments
(intervals 3 to 5 cm deep) at methane seeps in
the Eel River Basin, California (9). The sed-
iments contained highly 13C-depleted ar-
chaeal and bacterial lipid biomarkers (10)
(Table 1). By using FISH-SIMS, d13C (11)
was profiled from the periphery to the interior
of separate cell aggregates (in approximately
0.75-mm increments) by repeated sputtering
of the aggregate surface with a Cs1 beam
(12–15). These analyses revealed that cell
aggregates binding a specific archaeal probe
(ANME-2) in their inner core, and a bacterial
Desulfosarcina-Desulfococcus (DSS) probe
on their periphery, were composed of ex-
tremely depleted carbon with d13C values as
low as –96‰ (Figs. 1 and 2, A and B). These
isotopic signatures are best explained by as-
similation of carbon from a 13C-depleted
source. The only plausible source with suffi-
ciently 13C-depleted carbon is methane and,
indeed, the d13C values of methane obtained
from adjacent seep sites in Eel River Basin
range between –63 and –35‰ (16).

In addition to putative syntrophic ANME-
2/DSS consortia, cell aggregates that contained
the archaeal ANME-2 group, but not bacteria,
were also occasionally observed (Fig. 2, C and
D). Isotopic analysis of these monospecific
ANME-2 aggregations also revealed extreme
13C-depletions, reaching d13C values of –85‰,
again indicating that the major portion of
their biomass was derived from methane.
That these d13C values are lower than coex-
isting methane indicates significant isotopic
fractionation of the assimilated carbon by the
methane-oxidizing archaeal group, ANME-2
(Fig. 3). Although bacteria-free aggregations
of the Methanosarcinales-related ANME-2
group in methane-rich marine sediments have
not been previously reported (5, 6), our ob-
servations indicate that this archaeal group

may sometimes exist independently of syn-
trophic partners.

In contrast to the archaeal-bacterial con-
sortia, the carbon isotopic compositions of
other microbial aggregates from the same
Eel River Basin sample were about –20‰.
This value is consistent with assimilation of
organic carbon derived from photosynthetic
primary productivity or from the fixation of
CO2 (Fig. 2D). For comparison, we ana-
lyzed sulfate-reducing bacterial aggregates
originating from a shallow water hydrocar-
bon seep offshore Santa Barbara, Califor-
nia. Microscopic surveys using FISH of the
hydrocarbon-impregnated sediment sample
revealed abundant bacterial aggregates
phylogenetically related to the Desulfosar-
cina, but no ANME-2 archaea. Ion micro-
probe analyses of Desulfosarcina aggre-
gates displayed d13C values similar to those
of sedimentary organic carbon (17 ) and oils
from the underlying Monterey Formation
(Fig. 2, E and F). Carbon isotopic compo-
sitions from fatty acids extracted from the
hydrocarbon seep sediment ranged from
–26 to –19‰ (Table 1). No lipids with
isotopic compositions indicative of micro-
bial utilization of methane-derived carbon
were detected (18). Moreover, the fatty
acid distribution from the oil seep differed
significantly from that of the Eel River
Basin methane seep, suggesting that these

two sites harbored different bacterial com-
munities. Both lipid and whole-cell isotopic
data suggest that anaerobic oxidation of
methane is not a significant biogeochemi-
cal pathway at this site.

The variation in d13C values of aggre-
gates containing the archaeal ANME-2 was
greater than that of other cell aggregates.
Significant isotopic variations were ob-
served between individual ANME-2/DSS
consortia, with archaeal-bacterial aggre-
gates falling into two isotopically distinct
groups (Fig. 3). For aggregates with rela-
tively high d13C values, methane was prob-
ably not the exclusive carbon source. De-
spite the large range in isotopic values, all
the ANME-2/DSS consortia exhibit lower
d13C values than Desulfosarcina cell clus-
ters and other cell aggregates, which are
characterized by average d13C values in the
range –30 to –15‰ (Fig. 3).

To date, there have been no reported
studies of single-cell isotopic variation for
microbes, making interpretations of the
variability we observe difficult. Prelimi-
nary SIMS data obtained for reference from
pure cultures of cyanobacteria revealed
substantial carbon isotopic variation
(Gloeothece sp. 27152: mean d13C 5
–17.1 6 2.1‰, SD 5 7.5; n 5 13; and
Gloeocapsa sp. 29159: mean d13C 5
–24.3 6 1.3‰, SD 5 6.3; n 5 23), reflect-

Fig. 1. A schematic diagram of an archaeal
ANME-2/bacterial Desulfosarcina (DSS) aggre-
gate, showing the direction of penetration of an
ion beam, indicated by the arrow. The graph
shows the d13C profile obtained with the ion
microprobe versus time (minutes of Cs1 beam
exposure) through the same 10-mm aggregate
that is depicted in Fig. 2, A and B.

Fig. 2. Whole-cell
FISH of methane-oxi-
dizing consortia and
other cell aggregates
in methane seep sed-
iments, identified mi-
croscopically and tar-
geted with the ion mi-
croprobe. (A) Overlaid
epifluorescent image
of a Cy-3–labeled ar-
chaeal ANME-2 (in red)
and fluorescein-labeled
bacterial Desulfosarcina
(DSS, in green) cell ag-
gregate from Eel River
Basin. (B) Corresponding
DAPI (nonspecific stain
for DNA) and average
d13C value of the aggre-
gate obtained by SIMS.
(C) Cy-3–labeled ar-
chaeal ANME-2 aggre-
gate. (D) DAPI stain of
same field showing iso-
topic values of both the
ANME-2–targeted ag-
gregate and a cell aggre-
gate not targeted by ei-
ther the archaeal
ANME-2 or bacterial
DSS rRNA probes. (E)
Sulfate-reducing bacte-
rial aggregates from a
Santa Barbara hydrocar-
bon seep targeted with fluorescein-labeled bacterial DSS probe. (F) Corresponding DAPI stain of same field
and average d13C values obtained by SIMS. Scale bar, 10 mm in each panel.
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ing some degree of organism-specific het-
erogeneity probably magnified by closed-
system culture conditions. Whatever the
causes, the heterogeneity of isotopic values
in cell populations does not appear to be an
artifact of the SIMS procedure (19). In the
context of the cell aggregates analyzed, the
large d13C variations we observed may re-
flect differences in the relative proportion
of bacterial and archaeal biomass; hete-
rogeneity in physiological status; dilution
of the isotopic signal by contaminating ma-
terials, such as sediment particles (20);
or isotope effects caused by methane
depletion.

We also observed significant variation
in d13C between the outer and inner por-
tions of some ANME-2/DSS cell clusters,
which exhibit a distinctive isotopic trend to
lower d13C values with increasing penetra-
tion into the aggregate (Figs. 1 and 3).
Notably, the average isotopic variation
within single ANME-2/DSS aggregates
was significantly greater (18‰; n 5 8) than
aggregates composed of other microbial
species (5‰; n 5 5). This observation sug-
gests a highly 13C-depleted inner core of
methane-oxidizing archaea, surrounded by
a somewhat less 13C-depleted outer shell of
sulfate-reducing bacteria. These cellular
data are concordant with isotopic analyses
of lipid biomarkers extracted from the same
samples (Table 1). The somewhat lower
(by about –10 to –20‰) d13C values of the
archaeal lipids compared with the total cell
carbon determined by SIMS is in agree-
ment with previous observations of isotopic
compositions of individual lipids versus
biomass of Methanosarcina barkeri grown
on trimethylamine (21). The isotope pat-
terns we observed in the total carbon of
individual ANME-2/DSS cell aggregates

are consistent with the transfer of methane-
derived intermediates ( possibly acetate or
CO2), in addition to hydrogen, from meth-
ane-consuming archaea to their sulfate-re-
ducing bacterial partners (22, 23).

Although ion microprobe mass spec-
trometry has been used in diverse applica-
tions in the earth and planetary sciences, rang-
ing from interplanetary dust particles (14) to
microfossil analyses (13), this technique had
not yet been applied to active microbial cells
from environmental samples. The ability to mi-
croscopically characterize microbial cells di-
rectly with FISH-SIMS provides an effective
strategy for identifying additional microbial
groups participating in the anaerobic oxidation
of methane, as chemotaxonomic and phyloge-
netic evidence indicates diverse microbial as-
semblages are involved in this process (6, 24–
26). This approach can provide direct informa-
tion on the identity of environmentally relevant
microorganisms, as well as their metabolic ac-
tivities and ecological interactions, by using
either naturally occurring or exogenously added
stable isotopes as tracers.
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Persistence of Native-Like
Topology in a Denatured

Protein in 8 M Urea
David Shortle* and Michael S. Ackerman

Experimental methods have demonstrated that when a protein unfolds, not all
of its structure is lost. Here we report measurement of residual dipolar couplings
in denatured forms of the small protein staphylococcal nuclease oriented in
strained polyacrylamide gels. A highly significant correlation among the dipolar
couplings for individual residues suggests that a native-like spatial positioning
and orientation of chain segments (topology) persists to concentrations of at
least 8 molar urea. These data demonstrate that long-range ordering can occur
well before a folding protein attains a compact conformation, a conclusion not
anticipated by any of the standard models of protein folding.

In recent years, attention has turned to struc-
tural characterization of proteins whose na-
tive state has broken down in a major con-
formational transition termed unfolding or
denaturation. When nuclear magnetic reso-
nance (NMR) data for several small proteins
(1, 2) is combined with hydrodynamic and
small-angle x-ray scattering data, the picture
emerges that protein chains are relatively
compact under mildly denaturing conditions,
forming intermediates sometimes referred to
as molten globules. As conditions are made
less favorable for structure formation, most
commonly by adding the chemical denatur-
ants urea or guanidine hydrochloride, the de-
natured state gradually loses its residual
structure and increases in size (3). At the
highest concentrations of denaturants, the en-
semble of conformations is expected to con-
verge toward those of a statistical random
coil.

One protein whose denatured states have
been extensively studied is staphylococcal
nuclease, a small a1b protein of 149 amino
acids that lacks disulfide bonds or structural
cofactors. Its relatively low stability allows
the folded state to be broken down by a
variety of perturbations. In the presence of 5
M urea, small-angle x-ray scattering has
shown that the chain expands to a radius of
gyration of almost 35 Å, more than twice the
native state value of 16 Å (4). Nuclease can
also be denatured by removing a few amino
acid residues from both ends of the chain.
The D131D fragment system, consisting of
residues 10 to 140, refolds only in the pres-
ence of tight-binding ligands (5). In buffer at
32°C, it forms a somewhat expanded dena-
tured state, with a radius of gyration approx-
imately 1.3 to 1.5 times that of the folded

state. A de novo structure determination of
D131D using paramagnetic relaxation from
14 extrinsic spin labels revealed that many
features of the folded arrangement of seg-
ment positions and orientations persist in this
model denatured state (6). Application of this
same method to a less structured form of
nuclease, the low-salt, acid-denatured form,
failed because the measured distance re-
straints were insufficient to constrain the en-
semble of allowed conformations (7).

An alternate NMR approach to structure
determination involves imposing a slight orien-
tation on a macromolecule in solution by forc-
ing it to tumble in an asymmetric environment
(8). The small resulting alignment leads to in-
complete cancellation of the dipolar coupling
between magnetic nuclei close in space. The
residual dipolar coupling DAB contains infor-
mation on the relative orientation of the vector
between nuclei A and B with respect to one
unique molecular axis determined by the mo-
lecular alignment tensor. Alternatively, the in-
formation can be interpreted in terms of angular
relations between pairs of bond vectors that are
independent of the intervening distance (9, 10).
With information from residual dipolar cou-
plings alone, relatively high-resolution struc-
tures of the backbone can be calculated (11).
Although physical theory suggests there would
be complexities in converting dipolar couplings
measured in a denatured protein into sets of
orientational restraints (12), this approach is
especially attractive because the structural in-
formation is distance independent.

To orient the denatured fragment D131D
of staphylococcal nuclease, we used strained
polyacrylamide gels (13, 14). After diffusing
a concentrated solution of protein into a gel
cylinder and sliding it to the bottom of an
NMR tube, the gel cavities were distorted
from their initial spherical symmetry to ellip-
soidal symmetries by mechanical compres-
sion (15). Given the chemical inertness of
polyacrylamide, it is assumed that proteins
interact with the gel matrix only through
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