Gangdese arc detritus within the eastern Himalayan Neogene foreland basin: Implications for the Neogene evolution of the Yalu–Brahmaputra River system

Sara E. Cina a,⁎, An Yin b, Marty Grove c, Chandra S. Dubey d, Dericks P. Shukla d, Oscar M. Lovera a, Thomas K. Kelty e, George E. Gehrels f, David A. Foster g

a Department of Earth and Space Sciences, University of California, Los Angeles, 3806 Geology, Los Angeles, CA 90095, USA
b Department of Earth and Space Sciences and the Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA 90095, USA
c Department of Geological & Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA
d Department of Geology, University of Delhi, Delhi, 110007, India
e Department of Geological Sciences, California State University, Long Beach, CA 90840-3902, USA
f Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA
g Department of Geological Sciences, University of Florida, Gainesville, Fl 32611, USA

1. Introduction

The active Himalayan–Tibetan orogen is an ideal place to investigate the complex interactions among deformation, erosion and climate (e.g., Zeitler et al., 2001). These factors have influenced the evolution of the major Himalayan drainage systems and may have resulted in large-scale reorganizations of the drainage network via mechanisms such as headward erosion, river reversal and river capture (e.g., Burrard and Hayden, 1907; Brookfield, 1998; Clark et al., 2004). Such changes can significantly impact the distribution and intensity of erosion throughout the orogenic system, which in turn can affect the style and location of deformation.

The principal approach for evaluating possible river abandonment, reversal and capture events involves geomorphologic analyses (e.g., Burrard and Hayden, 1907; Brookfield, 1998; Clark et al., 2004). However, when source rocks possess spatially distinct compositional and age properties, provenance analysis emerges as an independent and complimentary tool to record the history of erosion and sediment transport (e.g., Najman, 2006; Najman et al., 2008; Clift et al., 2008). Because the Jurassic–Early Tertiary Gangdese batholith in the Lhasa terrane of southern Tibet is distinct from the largely cratonal rocks of the Himalayan orogen (e.g., Chu et al., 2006; Mo et al., 2007), provenance analysis is an effective approach to determine when and how rivers transported detritus of the Gangdese batholith across the Himalayan Range into the foreland.

The existence of abundant Cretaceous and Early Tertiary Gangdese batholith detrital zircons within Neogene foreland–basin strata in the Arunachal Himalaya (locality A in Fig. 1) was first reported by Cina et al. (2007). To better understand the significance of these results, we have undertaken detrital zircon U–Pb age and Lu–Hf isotopic measurements for samples from modern Himalayan Rivers (localities 1–8 in Fig. 1) and Neogene Himalayan foreland basin strata in the Itanagar and
Bhalukpong areas of Arunachal (localities A and B in Fig. 1) and the southern Sikkim Himalaya (locality C in Fig. 1). The results strongly indicate that the Gangdese-age zircon in the eastern Himalayan foreland was deposited by a south-flowing transverse river and was sourced from the Lhasa terrane of southern Tibet, directly north of the range, rather than from a laterally correlative Jurassic–Early Tertiary arc in the Indo-Burma Range to the east. These findings have important implications for the evolution of the Yalu–Brahmaputra River system and suggest possible roles for Himalayan transverse rivers in disrupting first-order longitudinal rivers as a result of tectonic or climatic events.

2. Background

2.1. The Yalu–Brahmaputra River system

Burrard and Hayden (1907) divide the Himalayan drainages into the longitudinal and transverse rivers; the former flow parallel to the orogen and cut across the Himalaya at its eastern and western syntaxes (i.e., the Indus and Yalu–Brahmaputra Rivers), while the latter flow southward perpendicular to the range (e.g., the Teesta, Manas, and Subansiri Rivers) (Fig. 1). Among these, the origin and evolution of the Yalu–Brahmaputra River have been most debated.

Exactly how far back in time the Yalu–Brahmaputra River system has connected the Lhasa terrane of Tibet with the Himalayan foreland basin is uncertain (Fig. 1). Although Burg et al. (1998) have proposed that the Yalu–Brahmaputra River system is long-lived and antecedent to the Himalaya, most researchers consider the establishment of the current drainage configuration in the Eastern Himalaya to be a Late Neogene event. For example, Seeber and Gornitz (1983) suggested that the Yalu River once linked up with the Lohit River while Brookfield (1998) alternatively postulated that the Yalu connected with the Irrawaddy via the Parlung River until ca. 10 Ma, before the Yalu and Brahmaputra Rivers became linked. Clark et al. (2004) and Zeitler et al. (2001) also favored Brookfield’s (1998) scenario but suggested more recent capture of the Yalu River by the Brahmaputra at ca. 3–4 Ma. Although the Yalu may never have drained eastward into the South China Sea via the Red River as suggested by Clark et al. (2004), it still may have connected with the south-flowing Irrawaddy or Salween Rivers prior to establishing its current course (Clift et al., 2008; Liang et al., 2008).

Uplift of the eastern syntaxes has been directly related to focused exhumation driven by the incision of Yalu–Brahmaputra River (the tectonic aneurysm hypothesis — see Zeitler et al., 2001; Koons et al., 2002; cf., Ding et al., 2001). The correlation of current topography and 40Ar/39Ar biotite and (U–Th)/He zircon cooling ages at the eastern syntaxis immediately downstream, support rapid and focused erosion there in the latest Pliocene and Quaternary (Finnegan et al., 2008; Stewart et al., 2008).

It has also been proposed that south-flowing Himalayan transverse rivers with catchments extending north of the range crest are antecedent (Fig. 1; Medlicott, 1868; Burrard and Hayden, 1907; Hayden, 1907; Heron, 1922; Wager, 1937), and one or more of these rivers may have carried south Tibetan detritus across the Himalaya into the foreland basin at the start of the Indo-Asian collision (Ding et al., 2005; Yin, 2006). If true, the progressive uplift of the Himalaya ultimately defeated these south-flowing rivers and led to the establishment of the markedly longitudinal, modern Yalu–Brahmaputra and Indus drainage systems.

2.2. Contrasting age and isotopic properties of the Lhasa terrane and Himalayan orogen

Zircon crystallization ages and Hf isotopic compositions differ significantly between the Lhasa terrane and the Himalayan orogen. The former is composed largely of Jurassic to Early Tertiary arc rocks whereas the Himalayan orogen consists primarily of variably metamorphosed Proterozoic–Eocene strata with minor Miocene leucogranites. The Lhasa terrane consists of 530 Ma and 850 Ma orthogneiss over lain by Ordovician–Cenozoic sedimentary and volcanic sequences (Yin and Harrison, 2000; Guynn et al., 2006). It is extensively intruded in the south by Jurassic–Early Tertiary (200–40 Ma) granitoids of the Gangdese Batholith (e.g., Honegger et al., 1982; Allègre et al., 1984; Schärer et al., 1984; Xu et al., 1985; Debon et al., 1986; Harris et al., 1988; Saidel et al., 1997; Harrison et al., 2000; Dong et al., 2005; Mo et al., 2005). The batholith is over lain by the 65–40 Ma Linzizong volcanic sequence (e.g., Coulon et al., 1986; Murphy et al., 1997). The Lhasa terrane also exposes minor post-collisional volcanic rocks and dikes with ages ranging from 30 Ma to 8 Ma (Coulon et al., 1986; Miller et al., 1999; Williams et al., 2001; Kapp et al., 2005; Chung et al., 2005; Mo et al., 2006, 2007).

The Himalayan orogen consists of lithologic units juxtaposed by major north-dipping faults: the Tethyan Himalayan Sequence (THS), the Greater Himalayan Crystalline Complex (GHC), and the Lesser Himalayan Sequence (LHS) (Fig. 1; LeFort, 1996; Hodges, 2000; Yin, 2006). The Upper Proterozoic to Eocene THS was deposited in the northern margin of the Indian continent and is dominated by marine carbonate and clastic sediment (LeFort, 1996). It contains volcanic horizons deposited in the Early Permian (Garzanti et al., 1999), Early–Middle Triassic (250–220 Ma) and Early Cretaceous (~133–132 Ma) (LeFort and Ral, 1999; Zhu et al., 2005b, 2006). The GHC hosts Upper Proterozoic and Paleozoic strata that have been metamorphosed to amphibolite facies as well as 500 Ma and locally 830–870 Ma orthogneiss units in the western and eastern Himalaya (Singh et al., 2002; Yin et al., 2006). The LHS consists of low-grade Precambrian strata locally overlain by Early Paleozoic sequences correlative to those in the THS (Myrow et al., 2003; Yin, 2006).

2.3. Himalayan foreland basin strata

Strata in the Himalayan foreland basin preserve a partial record of the Indo-Asian collision and development of the Himalayan orogen (Najman, 2006). Plate reconstructions and geologic data indicate that collision between the Indian and Asian continents began at 60 ± 10 Ma (see Yin and Harrison, 2000; cf. Zhu et al., 2005a). The effect of Indo-Asian collision in the Himalayan foreland basin was marked by shifts in isotopic composition and detrital zircon provenance (DeCelles et al., 1998; Najman et al., 2000; DeCelles et al., 2004). Although many researchers consider the Upper Eocene and Oligocene strata to be absent in the Himalaya foreland basin (e.g., DeCelles et al., 1998; Najman, 2006), new paleontologic data suggest that they may be locally present (Acharyya, 2007).

Our study of the Himalayan foreland basin strata is focused on sediments in the Sikkim and Arunachal Himalaya. In Sikkim (88–89°E, Fig. 1), the Cenozoic stratigraphy consists of the Lower to Middle Miocene Chunabati Formation and Upper Miocene to Pliocene Middle and Upper Siwalik Group (Fig. 2) (Acharyya and Sastry, 1976; Acharyya, 1999). In Arunachal (92–94°E, Fig. 1), the Upper Miocene Dafla and Subansiri Formations and the Pliocene Kimin Formation are present (Fig. 2) (Kumar, 1997).

3. U–Pb dating and Lu–Hf isotopic analysis of detrital zircon

3.1. Geologic settings of the samples

We collected Neogene samples from two locations (Itanagar and Bhalukpong, localities A and B in Fig. 1) in the Arunachal Himalaya (92–97°E) and a third location in the Sikkim Himalaya (88–89°E) (locality C in Fig. 1). The Itanagar area exposes the Upper Miocene Dafla Formation in the hanging wall and the Miocene Subansiri and Pliocene Kimin Formation in the footwall of the Tipi Thrust (Figs. 1 and 2) (Kumar, 1997). The Dafla Formation is >1200 m thick and has thickly bedded (5–8 m) coarse-grained sandstone interbedded with thinly bedded claystone and siltstone. The lower part of the Subansiri Formation is lithologically similar.
to the Dafla Formation, but has sandstone interlayered with conglomerate in its upper section. In the Kimin Formation, conglomerate predominates with minor interlayered siltstone and sandstone. Pebble imbrications in the Kimin Formation and trough cross-bedding laminations in the middle and upper parts of the Subansiri Formation indicate south to southwest paleocurrent directions (Fig. 2). Four sandstone detrital zircon samples were collected near Itanagar. Samples AY09-11-03-(1) and AY09-11-03-(1)B were from the basal Dafla Formation, sample AY02-07-06-(13) from the lowermost Subansiri Formation, and sample AY02-07-06-(8) from the upper Kimin Formation.

The Dafla, Subansiri and Kimin Formations are also exposed in the Bhalukpong area ~130 km west of the Itanagar area (locality B in Fig. 1) (Kumar, 1997). Here cross-bedding lamination is well developed in the Subansiri Formation and indicates S10°W to S30°W paleocurrent directions. Three Neogene samples were collected from the Dafla( samples AY09-11-03-(1) and AY09-11-03-(1)B were from the basal Dafla Formation, sample AY02-07-06-(13) from the lowermost Subansiri Formation, and sample AY02-07-06-(8) from the upper Kimin Formation.

The Dafla, Subansiri and Kimin Formations are also exposed in the Bhalukpong area ~130 km west of the Itanagar area (locality B in Fig. 1) (Kumar, 1997). Here cross-bedding lamination is well developed in the Subansiri Formation and indicates S10°W to S30°W paleocurrent directions. Three Neogene samples were collected from the Dafla (samples AY09-11-03-(1) and AY09-11-03-(1)B) were from the basal Dafla Formation, sample AY02-07-06-(13) from the lowermost Subansiri Formation, and sample AY02-07-06-(8) from the upper Kimin Formation.

The Sikkim Himalaya (locality C in Fig. 1) exposes two Tertiary units: the Lower to Middle Miocene Chunabati Formation and Upper Miocene to Pliocene Middle and Upper Siwalik Group (Acharyya, 1999). The Chunabati Formation consists of claystone, siltstone, sandstone and locally limestone, whereas the Siwalik strata have coarse-grained sandstone and conglomerate. Three detrital-zircon samples were collected from the Sikkim Himalaya (Fig. 2). Sample AY02-19-06-(10) was from thickly bedded (3–5 m) coarse-grained sandstone in the uppermost Chunabati Formation. Sample AY02-20-06-(2) was from a sandstone bed in a dominantly conglomerate sequence high in the Upper Siwalik Group. Sample AY02-19-06-(3), also from a sandstone layer stratigraphically underlies AY02-19-06-(2).

Modern sand samples were collected from three types of rivers with distinctive provenances: (1) the Yalu–Brahmaputra system including the Yalu, Siang, and Brahmaputra segments (locations 1–3 on Fig. 1) draining both the Lhasa terrane and Himalayan orogen, (2) transverse rivers (Kameng, Subansiri, and Teesta Rivers, locations 4–7 on Fig. 1) that lie west of the eastern Himalayan syntaxis and presently drain only the Himalayan orogen, and (3) a transverse river in the Indo-Burma Range located east of the eastern Himalayan syntaxis that drains both the Himalayan orogen and the Lhasa terrane (Lohit River, location 8 on Fig. 1). The locations of the seven river sand samples are shown in Fig. 1 and listed in Table 1.

3.2. Methods

We employed standard crushing, sizing, density, and magnetic methods to extract detrital zircons from sandstone and river sand...
samples. Laser ablation, multicollector, inductively coupled mass spectrometry (LA-MC-ICP-MS) methods were applied to measure U–Pb age distributions at The University of Arizona’s LaserChron facility (Gehrels et al., 2006). Based upon these results, a subset of the analyzed grains was further selected for additional Lu–Hf measurements, also using LA-MC-ICP-MS methods at the University of Florida (Mueller et al., 2008). Because we were interested in differentiating zircons potentially derived from different segments of the Gangdese batholith (Fig. 1), we only carried out Lu–Hf measurements with zircons younger than 200 Ma. Complete U–Pb and Lu–Hf data tables and additional analytical details are presented in the data repository document that accompanies this paper. U–Pb age results are displayed in Figs. 3 and 4 while Lu–Hf data are shown in Fig. 5.

### 3.3. Detrital zircon U–Pb age distributions from modern river sands

#### 3.3.1. Yalu–Brahmaputra system

##### 3.3.1.1. Yalu River

Sample AY06-28-06-1 (location 1 in Fig. 1) was collected in southeast Tibet near Zedong. The river sand is dominated...
by Cretaceous and Early Tertiary zircon (Fig. 3-1). Over 65% of dated zircons are <200 Ma. A well-defined maximum at 40–60 Ma accounts for 40% of the zircon. Another age cluster accounting for 12% of the zircon occurs between 450 Ma and 650 Ma with a maximum near 530 Ma. Lesser quantities of zircon yield ages in the 700–1200 Ma range with no maxima defined. Roughly 8% of the zircon has 207Pb/206Pb ages in excess of 1.2 Ga with no statistically meaningful maxima present.

3.3.1.2. Siang River. Sample SC-03-26-08-6 (location 2 in Fig. 1) was collected near Pashigat, ~550 km down stream from AY06-28-06-1. About 25% of the zircon is <200 Ma (Fig. 3-2). Most is distributed between 40–90 Ma and 110–130 Ma. A high concentration (17%) of older zircon occurs between 450 Ma and 570 Ma while another 20% is between 700–1400 Ma with peaks at 815 Ma, 1.0 Ga, and between 1.1 Ga and 1.3 Ga. The remaining 30% of zircon has ages >1.3 Ga with the only distinct peak at 1.6 Ga.

3.3.1.3. Brahmaputra River. Sample AY02-21-06-2 (location 3 in Fig. 1) was collected near Tezpur, about 900 km downstream from the Yalu River sample and 350 km downstream from the Siang River site. The percentage of <200 Ma zircon is 10% (Fig. 3-3). The <200 Ma zircon is
broadly distributed between 30 Ma and 130 Ma without distinct age peaks. About 10% of the zircon falls between 450 Ma and 550 Ma with a peak near 500 Ma. Most of the (70%) of the zircon forms a broad distribution between 700 Ma and 1.9 Ga, with weakly defined clusters at 860 Ma, 1.1 Ga, 1.3 Ga, 1.6 Ga, and 1.75 Ga.

3.3.2. Transverse Himalayan Rivers

3.3.2.1. Teesta River. The Teesta River is the westernmost transverse river we sampled. Sample SK08-A was collected within a large sandbar in a floodplain south of the MFT (location 4 in Fig. 1) and contains 3% < 200 Ma zircon. The largest peak in the distribution occurs at 500 Ma, with nearly 50% of all zircon falling between 400–500 Ma (Figs. 3–4).

3.3.2.2. Kameng River. Sample AY02-23-06-1 was collected at the outlet of the Kameng River into the modern foreland basin (location 5 in Fig. 1). The sample lacks ages between 30 Ma and 200 Ma (Figs. 3–5), but contains solitary ages at 25 Ma and 230 Ma. Nearly 40% of the zircon ages fall between 450 Ma and 650 Ma with a peak at 500 Ma. An additional 40% of the zircon is distributed between 750 Ma and 1.2 Ga and clustered at 750–850 Ma and 1.1–1.2 Ga, respectively. While 18% of the zircon is older than 1.2 Ga, no significant age peaks occur.
3.3.3. Northernmost Indo-Burma Range rivers

3.3.3.1. Lohit River. Sample SC-03-26-08-5 was collected at the intersection of the river with the local topographic front created by active contractional structures (location 8 in Fig. 1). The Lohit River sample yields 36% zircon with ages <200 Ma (Figs. 3–7). Latest Jurassic and Early Cretaceous zircon U–Pb zircon ages are dominant in (100–150 Ma). Early Paleozoic–latest Neoproterozoic zircon is scarce. About 9% of the zircon occurs between 1.0 to 1.25 Ga. The highest concentration (42%) of zircon in the Lohit River is broadly distributed between 1.9–3.0 Ga with no definitive peaks present.

3.4. U–Pb age results from Neogene strata in the Himalayan foreland basin

3.4.1. Itanagar area, Arunachal Himalaya, locality A

We analyzed two samples from the Upper Miocene Dafla Formation (09-11-03-1A and 09-11-03-1B), one from the Upper Miocene Subansiri Formation (AY02-07-06-13), and one from the Pliocene Kimin Formation (AY02-07-06-8). The stratigraphic positions of the samples are shown on Fig. 2. Because the two Dafla samples were collected in close proximity and yield age distributions that are statistically indistinguishable (see discussion in Section 4 on data analysis) we elected to pool the data (Fig. 4a–c). All three formations yield significant concentrations of <200 Ma zircon at 16% (combined Dafla sample), 23% (Subansiri sample), and 15% (Kimin sample). Overall, 18% of the 272 zircons analyzed yield <200 Ma U–Pb ages. The majority of the young zircons are between 40 Ma and 110 Ma with the most prominent clusters at 40–70 Ma. All three units yield high concentrations of 450–550 Ma zircon and Proterozoic zircon with ages at 800 Ma, 1.15 Ga, and 1.65 Ga.

3.4.2. Bhalukpong area, Arunachal Himalaya, locality B

We analyzed three samples in the Bhalukpong area, including one from the Upper Miocene Dafla Formation (AY02-12-06-9) and two from the Upper Miocene Subansiri Formation (AY02-12-06-5, AY02-12-06-6; Figs. 1 and 2). We combined the age distributions measured from the two Subansiri samples because they are statistically indistinguishable (see section DR 2 in the Supplementary material). The Bhalukpong area results are shown in Fig. 4d and e. The Dafla sample contains 2% of the total zircon grains with ages <200 Ma at 125 Ma and 130 Ma. Alternatively, 31% of the U–Pb analyses from the pooled Subansiri sample were <200 Ma. Ages yielded by the young zircons define a broad distribution between 20 Ma and 110 Ma with the strongest age cluster between 40 Ma and 60 Ma. Both the Dafla and Subansiri samples exhibit strong peaks at 500 Ma and a broad distribution of Proterozoic ages between 700 Ma and 1.9 Ga with clusters at 800 Ma, 1.15 Ga, and 1.65 Ga.

3.4.3. Sikkim Himalaya, locality C

Three samples of Tertiary sandstone from the Sikkim Himalaya were analyzed (Figs. 1 and 2): one from the upper part of the Lower–Middle Miocene Chunabati Formation (AY02-19-06-10) and two from the Upper Miocene Subansiri Formation (AY02-12-06-5, AY02-12-06-6; Figs. 1 and 2). The U–Pb age distributions from all three samples are shown in Fig. 4f, g, and h. All samples define a strong peak near 500 Ma and display a broad distribution of Proterozoic and Archean ages with clusters at 700–1200 Ma and 2.4–2.7 Ga. Four of the 227 analyses obtained (1.8%) yield U–Pb ages between 16 and 29 Ma. The provenance signature appears to have evolved with time. The oldest sample from the Chunabati Formation (Fig. 2) contains a 217 Ma zircon and the lowest concentration of 2.4–2.7 Ga zircon [Fig. 4h]. The two younger Subansiri samples have higher concentrations of 2.4–2.7 Ga zircon.

3.5. Lu–Hf isotopic results

Previous workers have concluded that the segments of the Jurassic–Early Cenozoic arc in Southern Tibet and the Indo-Burma Ranges have different Hf isotopic compositions (Chu et al., 2006; Liang et al., 2008). Consequently, we have performed detrital zircon Lu–Hf analyses from modern sands of the Yalu, Siang, and Lohit Rivers as well as the Kimin and...
Table 2
Kolmogorov–Smirnoff comparison (tertiary strata vs. modern river sands).

<table>
<thead>
<tr>
<th></th>
<th>Yalu River</th>
<th>Siang River</th>
<th>Brahmaputra River</th>
<th>Kameng River</th>
<th>Subansiri R. (S of MFT)</th>
<th>Subansiri R. (N of MFT)</th>
<th>Lohit River</th>
<th>Teesta River</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dafia Fm. (Itanagar [A])</td>
<td>7E-32</td>
<td>2E-04</td>
<td>5E-10</td>
<td>4E-04</td>
<td>0.12</td>
<td>9E-04</td>
<td>2E-17</td>
<td>0.003</td>
</tr>
<tr>
<td>Subansiri Fm. (Itanagar [A])</td>
<td>2E-21</td>
<td>0.04</td>
<td>9E-06</td>
<td>3E-05</td>
<td>0.23</td>
<td>8E-08</td>
<td>7E-16</td>
<td>0.001</td>
</tr>
<tr>
<td>Kimin Fm. (Itanagar [A])</td>
<td>1E-32</td>
<td>0.04</td>
<td>1E-04</td>
<td>4E-03</td>
<td>0.27</td>
<td>5E-08</td>
<td>1e-15</td>
<td>0.004</td>
</tr>
<tr>
<td>Dafia Fm. (Bhalukpong [B])</td>
<td>1E-32</td>
<td>1E-07</td>
<td>0.02</td>
<td>0.06</td>
<td>3E-06</td>
<td>4E-13</td>
<td>2E-09</td>
<td>4E-07</td>
</tr>
<tr>
<td>Subansiri Fm. (Bhalukpong [B])</td>
<td>6E-15</td>
<td>5E-04</td>
<td>9E-15</td>
<td>5E-11</td>
<td>2E-06</td>
<td>1E-05</td>
<td>4E-17</td>
<td>2E-06</td>
</tr>
<tr>
<td>U. Siwalik Gr. (Teesta [C])</td>
<td>6E-21</td>
<td>1E-04</td>
<td>0.02</td>
<td>3E-05</td>
<td>2E-07</td>
<td>8E-15</td>
<td>2E-05</td>
<td>6E-05</td>
</tr>
<tr>
<td>L. Siwalik Gr. (Teesta [C])</td>
<td>9E-30</td>
<td>3E-05</td>
<td>0.17</td>
<td>3E-04</td>
<td>3E-06</td>
<td>2E-14</td>
<td>1E-06</td>
<td>9E-06</td>
</tr>
<tr>
<td>Chubabati Fm. (Teesta [C])</td>
<td>3E-28</td>
<td>2E-05</td>
<td>0.17</td>
<td>1E-03</td>
<td>5E-06</td>
<td>5E-15</td>
<td>3E-06</td>
<td>7E-05</td>
</tr>
</tbody>
</table>

Bold values indicate a high degree of similarity with values >0.05 indicating the distributions are indistinguishable at 95% confidence.

Dafa Formation samples from the Itanagar area (Fig. 1) to test the utility of combined U–Pb and Lu–Hf as a refined provenance tool in this setting (see also Bodet and Schärer, 2000; Wu et al., 2007). Our specific goal was to determine if the Hf isotopic signature of the Gangdese batholith-derived detritus in the river sands varied along strike as implied by the basement Hf results of Chu et al. (2006) and Liang et al. (2008).

Measured present-day εHf values of 0–200 Ma zircons were extrapolated to initial values at the time of zircon crystallization using the Lu–Hf decay constants of Söderlund et al. (2004). The resulting array of age-corrected εHf values range from primitive (+10 to +15) to highly evolved (−10 to −15) (Fig. 5A). Cretaceous zircons yield the most primitive compositions while Oligo–Miocene zircons tend to yield more evolved Hf isotopic ratios. However, εHf values as low as −10 persist over the entire age range. Overall, rivers draining the Gangdese batholith both west (Yalu and Siang Rivers) and east (Lohit River) of the eastern Himalayan syntaxis exhibit no clearly resolvable variation of εHf values. When εHf and U–Pb age are combined however, distinctly different clusters emerge for the Yalu and Siang Rivers (Fig. 5A) vs. the Lohit River (Fig. 5B).

4.2. Mixing calculations

We performed mixing calculations to systematically assess whether sediment from different regions in Fig. 1 could have blended together to produce the observed age distributions obtained from the Neogene samples in the Arunachal Himalaya. All calculations involve two-component mixing between one proxy representing Himalayan-derived sediment and another representing sediment derived from the Lhasa terrane. We use the age distribution of the Kameng River sample to represent the former and age distributions of the Yalu and Lohit River samples as proxies for the latter. Comparisons of the synthetic age distributions are made relative to a composite age distribution derived from the four samples of the Itanagar area. The PROB value for 100% Kameng River when compared with this composite is 0.0003. Kameng–Yalu mixtures with 15–40% of the Yalu River age distribution closely match the age distribution of the Itanagar Neogene samples at 95% confidence (Fig. 6A and B). The best-fit mixture involves 24% of the Yalu River age distribution (PROB = 0.44).

An important reason that the incorporation of the Yalu River age components into the Kameng River age distribution so readily matches the Itanagar Neogene samples is that the Paleozoic and the older portion of the age distributions closely resemble each other (Fig. 6B). The same is not true when mixing the Lohit age distributions with the Kameng River ages. The Lohit age distribution differs from that obtained from the Itanagar Neogene samples, particularly with respect to the lack of 500 Ma zircon and the greater abundance of Paleoproterozoic and Archean zircons (Fig. 3–6). The best-fit Lohit–Kameng mixture has 16% Lohit and a PROB value of only 0.002 (Fig. 6A and C). The above calculations demonstrate that the age distributions of the Itanagar Neogene samples have the highest affinity with a Gangdese batholith source north of the Himalaya. The same conclusion holds for mixing calculations undertaken with Subansiri Formation samples from the Bhalukpong area, implying that those have a Tibetan source as well.

5. Discussion

5.1. Overview

Our detrital zircon results of Neogene samples have confirmed Cina et al.’s (2007) finding that appreciable concentrations of Cretaceous and Cenozoic zircon attributable to the Gangdese batholith are present...
of the north-dipping Tipi Thrust in the Itanagar area. In contrast, in the Bhalukpong area, Gangdese-age zircon is present in the Upper Miocene Subansiri strata in the footwall of the Tipi Thrust but absent in the Upper Miocene Dafla Formation in the thrust hanging wall (compare Fig. 4d–e). Finally, the Gangdese-age zircon is completely absent in the Neogene strata of the Sikkim Himalaya (Fig. 4f–g).

Analysis of modern sands of the Yalu–Brahmaputra system documents a significant downstream dilution of Gangdese-age zircon. The Yalu River sand (sample 1 in Fig. 1) consists of 67% Gangdese age zircon (Fig. 3-1), sand from the southern end of the Siang River, ~550 km downstream from the Yalu sample, carries only 26% Gangdese age zircon (Fig. 3-2), and finally, a further ~400 km downstream, the Brahmaputra River only carries ~10% Gangdese-derived zircon. The dilution of the Gangdese zircon along the Siang River can be attributed to the exceedingly high erosion rates across the eastern Himalayan syntaxis (e.g., Garzanti et al., 2004; Stewart et al., 2008), which lies entirely within the Himalayan orogen; whereas dilution of Gangdese zircon in the Brahmaputra River may be caused by further addition of the Himalayan detritus (Fig. 3-3). If the modern relationship between the percentage of Gangdese age zircon and its distance from the source area applies to the past, this implies that Neogene samples containing 15–31% Gangdese-age zircon were most likely deposited by a river that had just flowed past the Himalayan topographic front.

Our sampling of transverse Himalayan Rivers has yielded both expected results and a surprise. The Kameng River drains only the Himalayan orogen, and as anticipated, it produced an age distribution very consistent with the previous studies of detrital zircons from the major eastern Himalayan units (Fig. 3-5; cf. Amidon et al., 2005; Yin et al., 2006; McQuarrie et al., 2008). The Teesta River also has a distinctly Himalayan provenance signature (Fig. 3-4). In contrast, while the Subansiri River sample south of the MFT also exhibits much the same earliest Paleozoic, Neoproterozoic, Mesoproterozoic age clusters as the Kameng and Teesta River samples, it also yields abundant (18%) Cretaceous and Cenozoic Gangdese-age zircon (Fig. 3-6). It is not clear why this Subansiri River sand contains Gangdese age zircon while the Kameng and Teesta River sands do not. The simplest explanation is that the sample we collected consisted primarily of reworked Neogene sediments and was not representative of the modern Subansiri basin north of the MFT. This explanation is strongly supported by the results from the additional sample of modern Subansiri River sand we collected north of the MFT, which contains almost no <200 Ma zircon, and has a detrital U–Pb age distribution similar to those of the Kameng and Teesta Rivers. Outcrops of Cretaceous and younger material are present in the Himalayan orogen, (Zhu et al., 2005b; Aikman et al., 2008), and the small number of <200 Ma grains (3 out of 101 total) in this sample are most likely derived from these younger sources. However, the data suggest that these exposures are not sufficiently widespread in the Subansiri or any other Himalayan catchment to account for the strong abundance of <200 Ma detrital zircon in the Neogene foreland sediments, although more detailed mapping is required to confirm this.

Finally, our sampling of the Lohit River, which drains the eastern Gangdese batholith, revealed important differences in detrital zircon provenance relative to that supplied to rivers farther west. The differences range from subtle (i.e., the lack of an 800 Ma peak) to extreme (i.e., the apparent absence of 500 Ma zircon in the Lohit River catchment (Fig. 3-7). These characteristics allow us to conclude that the eastern segment of the Gangdese batholith present within the northernmost Indo-Burma Ranges is very unlikely to have supplied any other Himalayan catchment to account for the strong abundance of <200 Ma detrital zircon in the Neogene foreland sediments, although more detailed mapping is required to confirm this.

5.2. Origin of Gangdese batholith zircons in the Himalayan foreland basin

Below, we outline three models for the deposition of Gangdese batholith-derived sediment in the eastern Himalayan foreland basin.
(Figs. 7–9). A successful model must: (1) explain how the sediment was delivered to the foreland from the Lhasa terrane west of the eastern syntaxis, (2) account for the high concentrations of Gangdese age zircon, and (3) be consistent with the paleocurrent data in the Neogene foreland basin. Model I involves the simplest possible scenario: The Yalu–Brahmaputra River system has existed in its present configuration since the Late Miocene. Model II invokes a key role for an alternative transverse River (like the modern Subansiri River) as the vehicle by which the Tibetan sediment was routed to the foreland basin. The Subansiri is promising for such a role because its current catchment covers an extensive area north of the Himalayan crest and thus provides a potentially direct pathway between the Lhasa terrane and the Itanagar locality. Deposition of Neogene sediments by the connected Yalu–Subansiri River system can also account for the sedimentologic characteristics of the foreland basin strata that we have studied in the Arunachal area.

Model I, depicted in Fig. 7, holds that the present-day configuration of the Yalu–Brahmaputra River was established by 10 Ma. This view is consistent with those of Burg et al. (1998) who have proposed that the Yalu–Siang–Brahmaputra River system is antecedent to the Himalaya and Brookfield (1998) who alternatively postulated that the Yalu was captured by the Brahmaputra via the Siang River at ca. 10 Ma. As indicated in Fig. 7, Model I positions the Paleo–Brahmaputra River further to the north than it is today to explain how Neogene sediments deposited by the river could have been incorporated into the foreland fold–thrust belt. As Himalayan thrusts propagated forward, the Himalayan topographic front migrated southward, causing the west-flowing Brahmaputra River to shift south to its present-day location.

There are several possible problems with Model I. Firstly, our limited paleocurrent measurements in the Itanagar and Bhalukpong areas suggest deposition from south-flowing rivers, although this can potentially be reconciled with the fact that a large, braided, westward flowing river system would have numerous smaller N–S oriented channels, as does the modern Brahmaputra. Secondly, the percentages of <200 Ma zircon (15–31%) in the Neogene sediments are higher than might be expected after traveling longitudinally across the Himalayan foreland, where there would be a dilution of these zircons by older material derived from the Himalaya as occurs in the modern Brahmaputra River. It is worth noting however, that the significant dilution of Gangdese-derived material occurring at the eastern syntaxis in the modern Brahmaputra River is due in part to the strong coupling between erosion and exhumation of the Namche Barwe massif for at least the last 1 My (Finnegan et al., 2008; Stewart et al., 2008). Prior to the establishment of this feedback, there may have been less of an impact on the concentration of Gangdese detritus as the river traveled across the Himalayan orogen. Lastly, Uddin and Lundberg (1999) have proposed that the Brahmaputra River may have taken a course south of the Shillong Plateau and Mikir Hills during the Miocene, which would preclude the possibility of it depositing sediment at the Itanagar (A) and Bhalukpong (B) localities at that time. If this was the case, an alternate means for delivering Gangdese detritus to the foreland is required.

In Model II (Fig. 8), connection between the Yalu and Brahmaputra Rivers was established at 3–4 Ma, similar to the timing proposed by Zeitler et al. (2001) and Clark et al. (2004). Although sediment eroded from the Gangdese batholith would have been transported toward Indochina prior to 3–4 Ma (see Clark et al., 2004), transient glaciation could have temporarily diverted the Yalu into the Himalayan foreland basin. Montgomery et al. (2004) have identified the remnants of two paleolakes along the Yalu River near the eastern Himalayan syntaxis that were formed by glacial dams within the past 10,000 years. The shoreline of the larger lake stood approximately 680 m above current Yalu River. Zheng (1997) has shown that the advancement of glaciers in the Pamirs dammed large rivers during the Last Glacial Maximum. Neogene topography may have been sufficiently different that a dam of similar scale may have caused the Yalu River to overtop the Himalaya and flow out into the Subansiri River drainage. The biggest difficulty with Model II is that it cannot explain the persistence of Gangdese batholith provenance within the Neogene.

![Fig. 7](image-url). Model I for the evolution of the Yalu–Brahmaputra River system. Connection between Yalu and Brahmaputra Rivers is established in Late Miocene prior to deposition of Dafla Fm. in Itanagar area of Arunachal Himalaya. Sample positions from Itanagar and Bhalukpong are shown. Southward propagation of Main Frontal Thrust forces Brahmaputra River to migrate southward.
Fig. 8. Model II for the evolution of the Yalu–Brahmaputra River system. Yalu River is intermittently dammed by glaciations and diverted across the Himalayan crest to the foreland basin. Modern Yalu–Brahmaputra River system is established at 3 Ma.

Fig. 9. Model III for the evolution of the Yalu–Brahmaputra River system involving successive capture events by transverse Himalayan Rivers driven by headward erosion. This model invokes capture by the Subansiri River between 10–3 Ma and capture by the Siang River at ~3–4 Ma.
strata of the Itanagar area. This enduring signal can only be explained by deposition by a long-lived river. It is worth noting that glacial dams could also have been present in the scenario presented in Model I. The distinction is that in Model II, a mechanism is required to transport sediment from Lhasa to the foreland prior to ~3–4 Ma, when a direct connection was established via the Siang River.

In Model III, we propose that the Yalu River connected with the Brahmaputra River via a transverse River like the Subansiri from ~10 Ma until the present river course was established via the Siang River at 3–4 Ma (Fig. 9). Burrard and Hayden (1907) first noted that many long feeder streams to the Yalu River flow in the opposite direction to the main Yalu River trunk, suggesting that the Yalu River once flowed westward. Yin (2006) attributed westward to eastward flow reversal of the Ganges River in the Himalayan foreland to diachronous collision and eastward increase in the convergence rate between India and Asia. We speculate that a similar reversal process may have occurred in the Himalayan hinterland for the Yalu River, involving sequential capture events by Himalayan transverse rivers. Model III shows capture of the Yalu River by the Subansiri River during the Late Miocene (Fig. 9). This was followed by capture of the Yalu by the Siang River at 3–4 Ma. Increased headward erosion by the Siang River leading up to this capture event could be related to either the strengthening of the Asian monsoon around this time (Srinivasan and Sinha, 2000) or potentially the initiation of rifting at the Jachia nickpoint (Fig. 1).

As with Model II, by delivering Gangdese batholith-derived sediment directly across the Himalayan front via the Subansiri River, Model III is consistent with the persistently high concentrations of Gangdese–age zircon in the foreland sediment of the Itanagar area, as well as the observed paleocurrent data, and predicts the presence of Lhasa-derived sediment within the modern Subansiri basin. Model III also makes some testable predictions. For example, the relative age–Yalu–Subansiri River would have deposited Gangdese batholith-derived sediment within the modern Subansiri basin and remnants of these deposits may still be detectable in older river terraces. Additionally, if Model III is true, Upper Miocene foreland sediments east of the Subansiri River should not contain Gangdese–aged detrital zircon. Most significantly, it supports the suggestion of Zeitler et al. (2001) that the coupling between focused erosion and tectonics in the eastern Himalayan synclines has only existed at its present strength over the past 3–4 Ma. More data are required to comprehensively evaluate this possibility.

6. Conclusions

We have confirmed the presence of abundant detrital zircon derived from the Gangdese batholith north of the Himalaya within sediment deposited in the eastern Himalayan foreland in two separate localities. This extraregional sediment appears in the Upper Miocene Dalila and Subansiri formations and continues to be present in the Pliocene Kimin Formation. The wealth of the Gangdese–age component in the detrital zircon age distributions of these sediments is comparable to that of modern sand collected at the mouth of the modern Siang River, and suggests that these foreland sediments may have been deposited by a transverse river which had not traveled for a great distance along the Himalayan front. Further sampling and detailed sedimentological study of the foreland sediments is needed in order to determine whether this was the case.

Acknowledgements

This work was made possible by NSF grants to Yin (Tectonics) and Grove (Geochemistry-Petrology), by an ExxonMobil grant to Cina, and by support from DCS-DST and R&D Delhi University for C.S. Dubey and D.P. Shukla. We gratefully acknowledge the analytical support for U–Pb analyses provided by Victor Valencia from the LaserChron Center at the University of Arizona. The LaserChron Center is supported by a grant from NSF’s Instrumentation and Facilities Division. George Kamennov and Paul Mueller are thanked for their help with U–Hf analyses at the University of Florida. We thank Isabelle Coutard for providing us with the Teesta River sample. Finally, detailed and constructive reviews by Eduardo Garzanti, Djordje Grucic, George Hilley, and an anonymous reviewer greatly improved the content and clarity of the original manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.epsl.2009.06.005.

References


