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ABSTRACT

In this paper the static cylindrically symmetric
exterior solutions are briefly discussed and a
generalization of the concept of disposable grav
itational mass per unit lenght is given. A source
with counter-rotating particles is constructed to
study the changes in its characteristic parameters
after a gravitational pulse is emitted and the
system has returned to a new static regime.

It is found that the system is physically under-
determined and that the disposable gravitational
mass always decreases.

1. Introduction.

A great deal of work has been done on gravitational waves. In most
cases the gravitational field has been studied without a direct rela-
tion to its source, even in the linearized theory. The simplest field
due to a finite source is spherically symmetrical but we know, by
Birkhoff's theorem, that a spherically symmetrical empty-space field is
necessarily static (the Schwarzschild solution). Thus, any description
of radiation from a finite system must necessarily involve, at least,
three coordinates (r,z,t). However we do not know, at present, of any
exact solution describing gravitational waves from bounded sources. A
mathematically simple situation is to consider cylindrical gravitation-
al waves of the Einstein-Rosen'’ type to investigate the relation be-
tween the field and its source in a system of infinite length. In this
paper we consider this physically unrealistic situation constructing
however a source within the kinetic theory of surface layers in GR.
This source will be composed of counterrotating particles conforming an
indefinite hollow cylinder that gives place to a static metric in a
stationary regime.

2. The Coordinate System. The Static Solution.

The interior (exterior) region of the hollow cylinder will be de-
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noted by M~ (MY). The space-time regions M~ and MY will be des-
cribed by using hyperbolic canonical coordinates2) with the line ele-
ment in the form

ds? = e2(1-w) (dr? - dt?) + ezwdz2 + e‘zwr2d¢2 . (1)

These coordinates are uniquely determined up to the (non-trivial)
change of scale.

r"e‘sr;t-*est; z-’e’az;¢-'¢
(2)
VU 5 oy 2y
The Einstein field equations in empty-space are
wrr + Wr/r - wtt =0 (3)
Y, =2c¥ ¥ 3 v =r (Y2 +y2) | (4)
t r t r r t

The general static (time-independent) solution is
vV=alnr+p vy =02 fnr+e

where @, f and € are constants. It seems that the static solutions
depend on three arbitrary constants; however the coordinate freedom
represented by the transformations (2) allows us to reduce the constants
to only two which may be chosen as @ and the combination

A =e +a?8/(1a), It is easy to show that under the change of scale
(2) the constants & and A have the important property of being inva-
riant quantities. The invariance of the constant A and the transforma
tion property of ¥ suggest modifying Stachel's3) definition of dispos
able gravitational mass M, (the amount available for radiation per
unit length), in the general non-static solution, by defining

M = rl_i’ngo[V-Olz n r + a?B/(1 ~a)]

3. ASource With Counter-rotating Particles.

4)

Within the framework of the surface layer formalism ’° and kinetic
theory i GR 5) let us consider the space-time, M, as
M=MuzunMt , i.e., the junction Mt to M~ through the singular
hypersurface Z (the history of the hollow cylinder). The energy-mo_
mentum tensor associated with the counter-rotating particles conforming
Z s

Sij = uiuj +p hij H hij = gij + uiuj - vivj .

here g 1is the unique induced Lorentzian metric in 2 given by

d“s’2 - eZWQ dzz + RZ e—Zwo d¢2 - dr? .
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The indices (i,j) indicate the variables (z,¢,7) and v = e~ WOB/az

u = 8/0r i ¥, =V¥|]x ; R isthe radius of the cylinder. The
explicit relations of 7 and p with the energy (E) and angular momen-
tum (J) of a single particle of proper mass £ on a circular orbit in
the cylinder are

n = KE/JR p=n(E2-u2)/E2 ;  E2-(eYog/R)2 = u?

where K is a normalization constant. The solutions in M} and M~ are

¥, =[2p/(p-n)1L&n(x/R) + Ln] 2nR(n+p)2/p] + Yo s r 2R (5)

Y. = [20/(p-m)128n(x/R) + Lnl(n+p)/(-p)1% + 9, 5 r <R (6
v_ = tn[2aR(n+p)2/p] + 7, = Y ; 0<r<R (7)
Y_=7 3 0<r<R (8)

- 0
the gravitational mass per-unit of proper length of the cylinder is

Mg, =%a(a-1) Yo « = 2p/(p-n) .

4, Einstein-Rosen Gravitational Radiation Pulse.

A solution of eq. (3) of the form

T f(x) dx
[(t=x)? =277 t2r

X(r,t) =5

O “—rt

where f(x) = 0 for x <0, may be associated with a pulse of gravi-
tational radiation?’/By choosing f(x) we can adjust intensity and
duration of the pulse. Let w (r,t) be the function associated with
X through eqs. (4) and (J,y) represents a static solution. Then a
new solution of (3) and (4) are

U(r,t) = ¥(r) + x(r,t); y(r,t) = 7(r) +w(r,t) +2ax(r,t).

Marderqnas shown that if f(x) =0 for x =T 20, then for every r
the solution becomes aszmptotically (as t —> %) static again in the
form ¥ - ¥ 5 Y >7Y - k° , i-e, 7 has necessarily changed by a negative
ammount and a permanent change in the source has occurred. It is pre-
cisely this change that we wish to investigate by considering the
static solution with the hollow cylinder of the last section. The
static exterior solution after the pulse will be

wo

@ fnx+B =¥ Y. =a2 nr+e -kZ=7 -k

There will be a corresponding change in the source, i.e.
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a=a-= 20/(P-7) ;3 € =€ -k2 3 B =B , which gives us

E=E ; o= wp®; am-a@m'?
~ " (9
(Mg /Mg ) = (R/B)

To complete our study of the change in the source parameters we need an
additional hypothesis to establish, for instance, a relation between R
and R. Assuming, e.g., that the normalization constant K remains un-

changed, i.e., K =K, from (9) and the definition of K we obtain
(@2 -1) Ln(R/R) = k2

therefore if lal <1 (the weak field limit is obtained when p<n,
and thus lal may be considered small), we have

R< s J< s M .
R<R J<J MGI<MGl (10)

The physical suitability of the hypothesis K = K may be justified
recalling first that the system under consideration is infinite and
consequently has not a well defined number of particles and secondly,
the invariance of a normalization constant like K is a familiar hypoth
esis in similar cases. However, it is important to realize that this
hypothesis is crucial to obtain the result (10). For instance, if we
were to assume that the total number of particles per unit o& proper
length is conserved, we would have obtained (7/7) = (R/E) e o=¥o

and therefore 7%, = v, , which implies that R>R; J >J and

ﬁG > M., . However, in all these cases the disposable gravitational
mabs in the static regime is M; = A and it changes according to

E':Ml-kz >

showing that M, , at least in these cases, is a good measure of the
amount of mass available for radiation.
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