Oxygen isotopes in magnetite and fayalite in CV chondrites Kaba and Mokoa

BYEON-GAK CHO1,3,4, ALEXANDER N. KROT2 and JOHN T. WASSON3,4*

1Department of Earth Science Education, Seoul National University, Seoul, 151-742, Korea
2Hawai‘i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai‘i at Manoa, Honolulu, Hawaii 96822, USA
3Department of Earth and Space Sciences, University of California, Los Angeles, California 90095-1567, USA
4Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095-1567, USA

*Correspondence author’s e-mail address: jtwasson@ucla.edu
(Received 1999 November 11; accepted in revised form 2000 July 17)

Abstract—We report in situ measurements of O-isotopic compositions of magnetite and primary and secondary olivine in the highly unequilibrated oxidized CV chondrites Kaba and Mokoa. In both meteorites, the magnetite and the secondary olivine (fayalite, Fa90–100) have O-isotopic compositions near the terrestrial fractionation (TF) line; the mean Δ17O (= δ17O–0.52 × δ18O) value is about −1‰. In contrast, the compositions of nearby primary (chondrule), low-FeO olivines (Fa1–2) are well below the TF line; Δ17O values range from −3 to −9‰. Krot et al. (1998) summarized evidence indicating that the secondary phases in these chondrites formed by aqueous alteration in an asteroidal setting. The compositions of magnetite and fayalite in Kaba and Mokoa imply that the O-isotopic composition of the oxidant was near or somewhat above the TF line. In Mokoa the fayalite and magnetite differ in δ18O by ~20‰, whereas these same materials in Kaba have virtually identical compositions. The difference between Mokoa magnetite and fayalite may indicate formation in isotopic equilibrium in a water-rich environment at low temperatures, ~300 K. In contrast, the similar compositions of these phases in Kaba may indicate formation of the fayalite by replacement of preexisting magnetite in dry environment, with the O coming entirely from the precursor magnetite and silica. The Δ17O of the oxidant incorporated into the CV parent body (as phyllosilicates or H2O) appears to have been much (7–8‰) lower than that in that incorporated into the LL parent body (Choi et al., 1998), which suggests that the O-isotopic composition of the nebular gas was spatially or temporally variable.

INTRODUCTION

The CV (Vigarano-group carbonaceous) chondrites are among the most studied chondrites. McSween (1977) divided CV chondrites into the less common reduced subgroup and the more common oxidized subgroup largely on the basis of their abundances of reduced phases such as metal and oxidized phases such as magnetite. Krot et al. (1995) showed that the oxidized CV have experienced extensive alteration resulting in the formation of secondary nepheline, sodalite, fayalitic olivine, fayalite, salite-hedenbergitic pyroxenes, phyllosilicates, avaruite, and magnetite, whereas the reduced CV largely escaped extensive alteration. The oxidized CV were recently divided into the Bali- and Allende-like lithologies (Weisberg et al., 1997; Krot et al., 1998). The Bali lithology is characterized by the presence of abundant secondary fayalite (Fa90–100) and phyllosilicates, whereas the Allende lithology virtually lacks these minerals and contains fayalitic olivine (Fa40–60), nepheline, and sodalite instead. Krot et al. (1998) suggested that the Allende lithology experienced asteroidal alteration at higher temperatures than the Bali lithology. The observed excess of 53Cr in Mokaia fayalite with the initial 53Mn/55Mn ratio of (2.3 ± 0.2) × 10−6 suggests that fayalite formed about 7–10 Ma after crystallization of the Allende calcium-alumina-rich inclusions (CAIs), which is consistent with an asteroidal origin (Hutcheon et al., 1998).

Our team used the University of California at Los Angeles's Cameca ims 1270 ion microprobe to study magnetite in CV3 Allende (Choi et al., 1997) and in the unequilibrated LL3 chondrites Semarkona and Ngawi (Choi et al., 1998). The mean Δ17O (= δ17O–0.52 × δ18O) in LL3 magnetite was found to be ~5.2‰, the highest Δ17O value reported in meteorite samples that clearly formed in the solar system. The data were interpreted to indicate that the oxidant (probably H2O) responsible for the formation of the magnetite had Δ17O ~7‰.

We report O-isotopic data for several magnetite and fayalite grains in the oxidized CV chondrites Kaba and Mokoa. Key questions addressed in this paper are (1) the nature of the asteroidal process that produced the magnetite and fayalite (2) the nebular source of the oxidant that produced the magnetite and (3) the number and nature of the major nebular reservoirs (in particular, their O-isotopic compositions) and whether the composition of the gaseous reservoir changed with time or location. A preliminary report of the Mokoa data was given by Krot et al. (1998).

SAMPLES AND ANALYTICAL PROCEDURES

Polished thin sections of Kaba (JSC 75.1-K1, off ASU 75.1), Mokoa (JSC 35794-M1, off BM35794) and USNM2166 were studied using optical microscopy, backscattered electron imaging, and electron probe microanalysis. Backscattered electron images were obtained with a Zeiss DSM962 scanning electron microscope using a 15 keV accelerating voltage and 1–2 nA beam current. Electron probe microanalysis was performed with a Cameca-microbeam SX50 electron microprobe using a 15 keV accelerating voltage, 10–20 nA beam current, and beam size of about 1–2 µm using wavelength dispersive x-ray spectroscopy. For each element, counting times on both peak and background were 30 s (10 s for Na and K). Matrix effects were corrected using PAP procedures.

Oxygen-isotopic measurements on the Cameca 1270 were carried out during 1997–1998. A defocused Cs+ beam of 0.1–0.5 nA was used to sputter craters ~12 to 25 µm in diameter on carbon-coated polished thin sections. Negative 18O ions were measured by a Faraday cup; the other isotopes were collected on an electron multiplier. In many analyses of olivine and some on magnetite, 17O– peaks were fully separated from 16O– peaks with mass resolving power of ~7000. Some spots on magnetite had relatively large...
Fig. 1. Backscattered electron micrographs of the fayalite-hedenbergite-magnetite-bearing chondrules #8 (a, b, c) and #6 (d, e, f) from Mokoia. (a–c) Regions outlined in (a) are shown in detail in (b) and (c). Fayalite (fa) grains occur in the outer portion of the chondrule. These grains contain inclusions of Ni-bearing sulfide (sf) and magnetite (mg) associated with hedenbergite pyroxene (hd); some sulfide inclusions have elongated shapes. Low-Ca pyroxene (px) grains and mesostasis are replaced by phyllosilicates (phl). Forsteritic olivine (ol) phenocrysts and fayalite do not show evidence of replacement by phyllosilicates. Ion probe spots in fayalite grains analyzed are indicated by arrows in (b) and (c). (d–f) Large opaque nodule in the periphery of chondrule #6 outlined in (d) is shown in detail in (e–f). The large nodule consists of Ni-bearing sulfide (sf), fayalite (fa), and hedenbergitic pyroxene (hd). Low-Ca pyroxene (px) and anorthitic mesostasis (mes) are replaced by phyllosilicates (phl); forsteritic olivine (ol) and fayalite appear to be unaltered. The inset in (d) shows a more detailed view of the ion probe spot on the fayalite grain. The ion probe spot in forsteritic olivine indicated near the bottom of (e) is shown in more detail in (f).
Fig. 2. Backscattered electron micrographs of the fayalite-hedenbergite-magnetite-bearing chondrules #7 (a–d) and #52 (e, f) from Mokoia. Regions outlined in (a) and (e) are shown in detail in (b) through (d) and (f), respectively. (a–b) Fayalite (fa) forms massive grains containing inclusions of Ni-bearing sulfide (sf) and magnetite (mgt); black area is plucked. Some sulfide inclusions have elongated shapes suggesting infilling of cracks. (c) The magnetite/fayalite ratio increases toward the chondrule's core. Hedenbergitic pyroxenes (hd) occur as rounded nodules surrounded by sulfides. (d) Low-Ca pyroxene (px) phenocrysts in the chondrule's periphery are replaced by phyllosilicates (phl) and rimmed by bronzite pyroxene (thin light-gray layers along phyllosilicate–pyroxene boundaries). (e, f) In chondrule 52, magnetite occurs as massive grains containing elongated inclusions of Ni-bearing sulfides and as rounded nodules (nod) containing tiny inclusions of Ca-, P-, Cr-, Ni-, and S-rich phases, possibly phosphates, chromite, and Ni-bearing sulfides. Massive magnetite appears to be replaced by fayalite and hedenbergite pyroxene; nodular magnetite appears not to alter to those silicates. Anorthitic mesostasis (mes) is replaced by phyllosilicates (phl). Fayalite and magnetite grains analyzed by ion probe are outlined and indicated by arrows in (b), (c), and (f).
16OH$^-$ peaks whose tails gave a minor contribution to 17O$^-$. The interference was monitored and corrected. The maximum 16OH$^-$ interference to the 17O$^-$ signal was 0.5%, and typically <0.1%. A terrestrial magnetite LP204 (Valley and Graham, 1991) was used as the magnetite standard and a synthetic fayalite as primary standard for fayalite. Olivine grains from the San Carlos peridotite were used as the secondary olivine standards and to evaluate the matrix effect of olivine composition on the instrumental mass fractionation. Analytical procedures are described in more detail in Choi et al. (1997).

MINERALOGY AND PETROGRAPHY

In Kaba and Mokoia, fayalite occurs in peripheral portions of magnesian (Type I) chondrules, fine-grained chondrule rims, and in matrix. These fayalite-bearing assemblages have similar mineralogy and compositions, probably indicating similar formation mechanism(s) (Hua and Buseck, 1995; Krot et al., 1998). The petrologic settings of the representative forsterite, fayalite, and magnetite grains from Kaba and Mokoia studied for O-isotopic compositions are illustrated in Figs. 1–4 and summarized in Table 1. Because of the small grain size, the O-isotopic composition of fayalite in fine-grained rims was not studied.

Fayalite in chondrules forms large subhedral-to-anhedral grains that commonly contain inclusions of Ni-bearing sulfides (troilite and Ni-poor pentlandite) and magnetite; the latter is nearly pure Fe$_3$O$_4$. In some cases, sulfide inclusions in fayalite have elongated morphologies (Figs. 1b,c and 2b). Texturally similar sulfides are present in massive magnetite grains (Figs. 2f and 3d). Our observations and those described by Hua and Buseck (1995) and by Krot et al. (1998) suggest that fayalite in Kaba and Mokoia chondrules replaced magnetite-sulfide assemblages. Fayalite-magnetite assemblages are closely associated with hedenbergitic pyroxenes (Figs. 1b,c; 2c,f; and 3d).

The host chondrules have igneous porphyritic olivine-pyroxene textures with forsteritic olivines (Fa$_{1-2}$) poikilitically enclosed by low-Ca pyroxene phenocrysts (Fs$_{1-2}$) that are surrounded by anorthitic mesostasis (with high-Ca pyroxene crystallites (Table 2). Low-Ca pyroxenes are replaced to various degrees by low-Al phyllosilicate and bronzitic pyroxene, whereas anorthitic mesostasis

![Backscattered electron micrographs of the fayalite-hedenbergite-magnetite-bearing chondrule #3 from Kaba.](image) Regions outlined in (a) are shown in detail in (b) through (d). Magnetite (mgt) occurs as massive grains associated with large grains of Ni-bearing sulfides (sf) and enclosing rounded magnetite nodules (nod) rich in tiny inclusions of Ca-, P-, Cr-, Ni-, and S-rich phases, probably phosphates, chromite, and Ni-bearing sulfides. Massive magnetite and sulfide is corroded by fayalite (fa) and hedenbergite pyroxenes (hd). Low-Ca pyroxene phenocrysts (px) (anorthitic mesostasis (mes)) are corroded by phyllosilicates (phl); forsteritic olivine grains (ol) show no evidence for the replacement, but some have higher FeO enrichment along the boundaries with fayalite (see (b)), and the latter have higher MgO. Regions of fayalite and magnetite grains analyzed by ion probe are indicated by arrows in (b) through (d).
FIG. 4. Backscattered electron micrographs of the neighboring chondrules #9 and #9a from Mokoia. Regions outlined in (a) are shown in detail in (b) through (f). Fayalite-magnetite-sulfide-bearing assemblages occur in the outer portions of the chondrules, their fine-grained rims, and in matrix. Both occurrences are connected through a fayalite-magnetite-sulfide vein (indicated by arrows in (f)) crosscutting the fine-grained rims around the chondrules. The dashed line in (f) marks the boundary between the fine-grain rim (FGR) of chondrule #9a and adjacent matrix (MX). Ion probe spots in forsteritic olivine phenocrysts (ol) and fayalite analyzed are indicated by arrows in (c), (d), and (e) (three spots).
TABLE 1. Description of the samples in which the O-isotopic compositions are determined.

<table>
<thead>
<tr>
<th>Chondrite</th>
<th>Section</th>
<th>Sample</th>
<th>Grains*</th>
<th>Descriptive notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mokoa</td>
<td>JSC 35794-M1</td>
<td>chd8</td>
<td>fa8-1, 2 f08</td>
<td>Subhedral fayalite, magnetite and sulfide inclusions (Fig. 1) Forsteritic olivine enclosed in low-Ca pyroxene phenocrysts</td>
</tr>
<tr>
<td>Mokoa</td>
<td>JSC35794- M1</td>
<td>chd6</td>
<td>fa6</td>
<td>Subhedral fayalite associated with hedenbergite (Fig. 1) Forsteritic olivine enclosed in low-Ca pyroxene phenocrysts</td>
</tr>
<tr>
<td>Mokoa</td>
<td>JSC35794—M1</td>
<td>chd52</td>
<td>f6-1, 2 mt52</td>
<td>Massive magnetite with elongated sulfide inclusions (Fig. 2) Forsteritic olivine phenocrysts</td>
</tr>
<tr>
<td>Kaba</td>
<td>JSC 75.1-K1</td>
<td>chd3</td>
<td>fa3-1, 2 mt3-1,2,3,4 f03-1, 2</td>
<td>Fayalite replacing massive magnetite (Fig. 3) Massive magnetite Forsteritic olivine phenocrysts</td>
</tr>
<tr>
<td>Mokoa</td>
<td>JSC 35794-M1</td>
<td>mx9-1,2</td>
<td>fa9-1, 2 mt61-1, 2</td>
<td>Fayalite with magnetite and sulfide inclusions (Fig. 4) Nodular magnetite</td>
</tr>
<tr>
<td>Mokoa</td>
<td>USNM2166</td>
<td>chd61</td>
<td>mt62</td>
<td>Nodular magnetite</td>
</tr>
<tr>
<td>Mokoa</td>
<td>USNM2166</td>
<td>chd62</td>
<td>mt62</td>
<td>Nodular magnetite</td>
</tr>
<tr>
<td>Mokoa</td>
<td>USNM2166</td>
<td>chd66</td>
<td>mt66</td>
<td>Nodular magnetite</td>
</tr>
</tbody>
</table>

*Abbreviations: fa = fayalite; fo = forsterite; mt = magnetite.

and high-Ca pyroxene are commonly replaced by phyllosilicates with higher Al contents (Figs. 1–4; Table 2). Forsteritic olivine phenocrysts show no evidence for alteration (at magnifications up to 5000), even in direct contact with phyllosilicates (Figs. 1f and 3d). Oxygen-isotopic compositions of forsteritic olivine phenocrysts in fayalite-bearing and fayalite-free chondrules were studied (Table 1).

All fayalite-hedenbergite-bearing chondrules studied contain a high abundance of opaque nodules composed of magnetite and Ni-bearing sulfides (Figs. 1–4). Rare relic Fe,Ni-metal nodules were found only inside chondrule phenocrysts (Fig. 3d). There are two textural types of magnetite in chondrules: rounded nodules and massive grains; both types commonly coexist (Figs. 2 and 3). The nodular magnetites have detectable concentrations of CaO (0.2–0.3 wt%), NiO (0.2–0.3 wt%), and Cr2O3 (0.3–1.5 wt%), possibly because of submicron inclusions of Ca-phosphates, chromite, and Ni-bearing sulfides. The massive magnetite grains are compositionally pure Fe3O4 (CaO, NiO, Cr2O3 <0.03 wt%) and commonly contain coarse-grained Ni-bearing sulfide inclusions; the latter are occasionally elongated (Figs. 2f and 3c), similar to those observed inside fayalite grains (Figs. 1b and 2b). It appears that only massive, compositionally pure magnetite grains are replaced by fayalite and hedenbergite; the coexisting nodular magnetite shows no evidence for this replacement (Fig. 3). Oxygen-isotopic compositions of both textural types of magnetite were studied (Table 1).

We studied two coarse fayalite grains in Mokoa matrix that occur near two fayalite-bearing chondrules (Fig. 4). These are similar to the chondrule fayalite grains in that they contain abundant inclusions of Ni-bearing sulfides and rare inclusions of magnetite. Fine-grained rims on neighboring chondrules are crosscut by fayalite-magnetite-sulfide veins that connect with the fayalite-magnetite-sulfide assemblages in the matrix (Fig. 4f), an indication that fayalite formation postdated accretion, compaction, and lithification of the fine-grained rims and matrix materials (Krot et al., 1998).

OXYGEN-ISOTOPIC COMPOSITION OF THE MAGNETITE AND OLIVINE

Our O-isotopic data on Kaba and Mokoa magnetite and olivine are summarized in Tables 3 and 4 and plotted in a δ17O vs. δ18O diagram (Fig. 5). All listed uncertainties are 1σ. The O-isotopic compositions of magnetite and fayalite fall near the terrestrial fractionation (TF) line. Weighted mean Δ17O values of magnetite and fayalite in Kaba are −1.0 ± 0.7%, and −0.6 ± 0.5%, respectively, and those in Mokoa are −0.9 ± 0.5% and 0.1 ± 0.5%, respectively. Standard deviations of Δ17O calculated from the grain to grain scatter are about 1%. The mean Δ17O values in Kaba and Mokoa are thus about −1%, marginally higher than the mean Δ17O of −2.2 ± 0.4% observed in Allende magnetite (Choi et al., 1997). The O-isotopic composition of the forsteritic olivines in both meteorites scatter around the carbonaceous chondrite anhydrous minerals (CCAM) line, with Δ17O values in the range −3 to −9%.

The O-isotopic compositions of fayalite in each chondrite are quite homogeneous. Although in each meteorite the mean Δ17O values in the fayalite samples are slightly higher than those in the magnetite, the differences are not significant within 2σ. More important is that these are essentially the same as those in magnetite. As discussed in more detail below, this suggests that the Δ17O of the

TABLE 2. Kaba and Mokoa chondrules. Representative microprobe analyses (in wt%) of primary olivine (ol), low-Ca pyroxene (px), mesostasis (mes), fayalite (fay), hedenbergite (hed), andradite (and), and secondary phyllosilicate (ph) differing in Al2O3 and H2O contents.

<table>
<thead>
<tr>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Cr2O3</th>
<th>FeO*</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>Total</th>
<th>Phase (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ol</td>
<td>42.1</td>
<td>0.03</td>
<td>0.03</td>
<td>0.54</td>
<td>1.0</td>
<td>0.12</td>
<td>56.1</td>
<td>0.21</td>
<td><0.03</td>
<td><0.03</td>
<td>100.1</td>
</tr>
<tr>
<td>px</td>
<td>58.2</td>
<td>0.15</td>
<td>0.09</td>
<td>0.61</td>
<td>0.77</td>
<td>0.11</td>
<td>38.5</td>
<td>0.60</td>
<td><0.03</td>
<td><0.03</td>
<td>99.8</td>
</tr>
<tr>
<td>mes</td>
<td>45.7</td>
<td>0.05</td>
<td>35.3</td>
<td><0.03</td>
<td>0.20</td>
<td>0.04</td>
<td>0.83</td>
<td>17.6</td>
<td>1.4</td>
<td><0.03</td>
<td>101.2</td>
</tr>
<tr>
<td>fay</td>
<td>28.8</td>
<td><0.03</td>
<td><0.03</td>
<td><0.03</td>
<td>70.2</td>
<td>0.27</td>
<td>0.18</td>
<td><0.03</td>
<td><0.03</td>
<td><0.03</td>
<td>99.3</td>
</tr>
<tr>
<td>hd</td>
<td>47.0</td>
<td>0.10</td>
<td><0.03</td>
<td><0.03</td>
<td>27.0</td>
<td>0.30</td>
<td>0.80</td>
<td>22.0</td>
<td><0.03</td>
<td><0.03</td>
<td>98.0</td>
</tr>
<tr>
<td>and</td>
<td>33.8</td>
<td>0.11</td>
<td>0.09</td>
<td>0.06</td>
<td>34.2</td>
<td><0.03</td>
<td>0.35</td>
<td>31.6</td>
<td><0.03</td>
<td><0.03</td>
<td>100.2</td>
</tr>
<tr>
<td>phl</td>
<td>40.2</td>
<td>0.05</td>
<td>9.1</td>
<td>0.66</td>
<td>3.2</td>
<td>0.03</td>
<td>17.8</td>
<td>0.11</td>
<td>1.7</td>
<td>0.33</td>
<td>73.2</td>
</tr>
<tr>
<td>phl</td>
<td>38.2</td>
<td>0.18</td>
<td>17.5</td>
<td>0.30</td>
<td>3.9</td>
<td>0.04</td>
<td>17.8</td>
<td>0.27</td>
<td>1.3</td>
<td>0.49</td>
<td>79.9</td>
</tr>
<tr>
<td>phl</td>
<td>36.0</td>
<td><0.03</td>
<td>25.5</td>
<td>0.03</td>
<td>4.8</td>
<td>0.04</td>
<td>19.0</td>
<td>0.67</td>
<td>2.2</td>
<td>0.42</td>
<td>88.6</td>
</tr>
</tbody>
</table>

*As Fe3O4 in andradite.
Oxygen isotopes in magnetite and fayalite in CV chondrites Kaba and Mokoia

TABLE 3. Oxygen-isotopic composition of magnetite in Kaba and Mokoia.*

<table>
<thead>
<tr>
<th>Meteorite</th>
<th>Grain</th>
<th>Host</th>
<th>$\delta^{18}O$ (%)</th>
<th>$\delta^{18}O$ (%)</th>
<th>$\Delta^{17}O$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997 June 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaba</td>
<td>mt3-1</td>
<td>chd3</td>
<td>9.5 ± 0.9</td>
<td>4.2 ± 1.0</td>
<td>-0.8 ± 1.3</td>
</tr>
<tr>
<td>Kaba</td>
<td>mt3-2</td>
<td>chd3</td>
<td>11.4 ± 1.0</td>
<td>5.5 ± 1.1</td>
<td>-0.4 ± 1.4</td>
</tr>
<tr>
<td>Kaba</td>
<td>mt3-3</td>
<td>chd3</td>
<td>12.6 ± 0.9</td>
<td>4.0 ± 1.0</td>
<td>-2.5 ± 1.3</td>
</tr>
<tr>
<td>Kaba</td>
<td>mt3-4</td>
<td>chd3</td>
<td>11.4 ± 1.0</td>
<td>5.6 ± 1.0</td>
<td>-0.3 ± 1.4</td>
</tr>
<tr>
<td>1997 July 07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mokoia</td>
<td>mt51</td>
<td>chd52</td>
<td>2.4 ± 0.8</td>
<td>0.8 ± 0.7</td>
<td>-0.4 ± 1.1</td>
</tr>
<tr>
<td>Mokoia</td>
<td>mt51</td>
<td>chd52</td>
<td>2.5 ± 1.0</td>
<td>1.2 ± 0.9</td>
<td>-0.2 ± 1.3</td>
</tr>
<tr>
<td>Mokoia</td>
<td>mt61-1</td>
<td>chd61</td>
<td>0.4 ± 0.8</td>
<td>-2.7 ± 0.8</td>
<td>-2.9 ± 1.1</td>
</tr>
<tr>
<td>Mokoia</td>
<td>mt61-2</td>
<td>chd61</td>
<td>3.4 ± 0.7</td>
<td>1.1 ± 0.8</td>
<td>-0.7 ± 1.1</td>
</tr>
<tr>
<td>Mokoia</td>
<td>mt62</td>
<td>chd62</td>
<td>2.3 ± 0.6</td>
<td>0.6 ± 0.8</td>
<td>-0.6 ± 1.0</td>
</tr>
<tr>
<td>Mokoia</td>
<td>mt66</td>
<td>chd66</td>
<td>-0.2 ± 0.9</td>
<td>-0.8 ± 0.8</td>
<td>-0.7 ± 1.2</td>
</tr>
</tbody>
</table>

*See Table 1 for descriptions of the host chondrules and matrix.

FORMATION OF MAGNETITE AND FAYALITE ON THE CV PARENT BODY

Both nebular and asteroidal origins for CV magnetite, fayalite, and other alteration products have been proposed (Hua and Buseck, 1995; Krot et al., 1995; Choi et al., 1997). Some of the magnetite grains in Figs. 1 to 4 show textural evidence of formation after chondrule and matrix were compacted (i.e., in an asteroidal setting). The massive euhedral to subhedral shapes of the fayalites seem consistent with slow growth into voids during hydrothermal formation. Krot et al. (1995, 1998) have made a strong case for concluding that the alteration of Kaba and Mokoia mainly, if not exclusively, occurred within the parent body. We will not repeat those arguments here but content ourselves with pointing our the ways in which the O-isotopic evidence either supports or is consistent with formation in asteroidal processes.

The precise reactions that produced magnetite and fayalite are not known. Their preferred reactions for the formation of magnetite and fayalite are:

\[3 \text{ Fe} \, (s) + 4 \text{ H}_2\text{O} \, (g) = \text{ Fe}_3\text{O}_4 + 4 \text{ H}_2 \, (g) \]
\[2 \text{ Fe} \, (s) + \text{ SiO}_2 \, (aq) + 2 \text{ H}_2\text{O} \, (g) = \text{ Fe}_2\text{SiO}_4 \, (s) + 2 \text{ H}_2 \]
\[2 \text{ FeO} \, (s) + 3 \text{ SiO}_2 \, (aq) + 2 \text{ H}_2 \, (g) = 3 \text{ Fe}_2\text{SiO}_4 \, (s) + 2 \text{ H}_2\text{O} \]

We will also show that another reaction not involving H2O may have formed the fayalite in Kaba:

\[\text{Fe}_2\text{O}_4 \, (s) + \text{ Fe} \, (s) + 2 \text{ SiO}_2 \, (s) = 2 \text{ Fe}_2\text{SiO}_4 \, (s) \]

In addition to metal, Fe(s) could be produced by the oxidation of schreibersite or an iron sulfide. The fact that all magnetite and fayalite data in both meteorites fall within experimental uncertainties of a fractionation line suggests that these phases formed from the same O-isotopic reservoir. This is consistent with the conclusions of Krot et al. (1998) that both phases formed during low-temperature aqueous alteration on the CV parent body.

Nonetheless, the very different natures of the O-isotopic magnetite-fayalite "fractionations" between Kaba and Mokoia indicate important differences in processes, conditions, or both. The extremely large fractionation in $\delta^{18}O$ between magnetite and fayalite in Mokoia provides strong evidence for this having occurred at low temperatures in an aqueous environment. As shown in Fig. 6, $\Delta^{18}O_{\text{fayalite-magnetite}}$ increases with decreasing temperature ($\Delta^{18}O$ is the difference in $\delta^{18}O$ between two phases formed under equilibrium conditions). The observed difference, ~20%, implies formation at low temperatures (~300 K) if fayalite and magnetite were in isotopic equilibrium. Because it is very difficult to reequilibrate grains by volume diffusion after their formation at such low temperatures, this large isotopic fractionation seems best understood in terms of the simultaneous growth of both phases. Other, more complex, models involving sequential formation of magnetite and fayalite not in equilibrium are also possible.

The measured range in $\delta^{18}O$ in Mokoia fayalite and magnetite is relatively small, <4% in each phase (the actual range could be smaller, if the experimental...
uncertainty plays an important role, or larger, if there is zoning on a scale smaller than our beam size, typically ~12 μm). This small range contrasts with observations in Semarkona, where Choi et al. (1998) observed a 13% range in δ18O in the magnetite. As noted by Choi et al. (1998), when Fe-Ni metal (or sulfides) are oxidized to form magnetite by a limited supply of H2O, the O of H2O might undergo appreciable fractionation because of preferential incorporation of lighter O isotopes into magnetite.

However, if magnetite and fayalite form simultaneously during low-temperature oxidation of preexisting Fe-Ni metal or sulfide (such as reactions (1) and (2)), the residual H2O may show only minimal change or even a decrease in δ18O, as observed in Semarkona. At low temperatures, magnetite has lower δ18O than H2O whereas olivine has higher δ18O (Fig. 6). In other words, the direction and amount of shift in O-isotopic compositions of H2O during the formation of magnetite and fayalite would be controlled by the magnitude of isotopic fractionation factors (a function of T) and relative amounts of magnetite and fayalite that formed. In any case, the magnitude of the increase in δ18O would be expected to be smaller than that produced by forming magnetite only. We suggest that the large difference in δ18O between magnetite and fayalite in Mokoia together with the relatively narrow ranges in each phase is an indication that, during alteration, similar amounts of these phases were forming.

The results for Kaba are very different. The δ18O of the magnetite is ~10% higher than that in Mokoia, and the magnetite and fayalite in Kaba have identical O-isotopic compositions within analytical error bars. The mean compositions for each Kaba phase plot close to the intersection of the CCAM and TF lines. Although the coincidence in δ18O of the Kaba phases might be coincidental, their physical proximity and similarity in Δ17O suggests that this is not the correct interpretation. It is highly unlikely that the Kaba magnetite and fayalite formed in isotopic equilibrium with each other because this would require very high temperatures (>>1000 K), which is inconsistent with petrographic observations (Krot et al., 1998; this study) and highly unequilibrated nature of this meteorite. A more plausible scenario of this is that magnetite formed first and that fayalite formed later by replacing some magnetite. If H2O was no longer present, the fayalite may have formed by reaction (4). This reaction is spontaneous throughout the entire range of plausible asteroidal temperatures. Because SiO2 is not found in x-ray maps, this hypothetical phase is either fine grained and dispersed or the SiO2 was produced by the breakdown of another phase. If, following formation of magnetite during aqueous alteration, temperatures rose and the remaining water was expelled, reaction (4) would have occurred (providing all reactants were present in the microenvironment).

However, this scenario can only account for the similarity in δ18O if there was no isotopic equilibrium between fayalite and the unreacted magnetite. Because half the fayalite O comes from the SiO2, our scenario requires this O to be similar in δ18O and Δ17O to that in the magnetite. If the SiO2 had been precipitated during the aqueous alteration that formed the magnetite, it would have had the same Δ17O as the magnetite. The difficulty is in explaining the δ18O, because formation in equilibrium with the magnetite at ~300 K would leave the SiO2 with a δ18O much higher than that of the magnetite. A possible solution is that the labile SiO2 had formed very late and that the δ18O of the H2O had drifted >10% lower by the time this part of the SiO2 had formed.

EVOLUTION OF OXYGEN RESERVOIRS IN THE SOLAR NEBULA

Our Kaba data seem to provide the most definitive approximation of the composition of the high-Δ17O endmember of the CCAM line (Fig. 3). This line is anchored at the low Δ17O end.
by refractory inclusions, and particularly by the spinels in these inclusions. The line was originally defined on the basis of mineral separates from refractory inclusions, with mellilithe and anorthite generally defining the upper extreme at Δ17O ~1‰ (Clayton et al., 1977; Ryerson and McKeegan, 1994).

However, other samples plot at still higher values. Rubin et al. (1990) reviewed the evidence and found that that the highest samples plotting near the CCAM line were CV Allende fine-grained matrix (Clayton et al., 1976, 1983) and samples of coarse-grained rims removed from two Allende chondrules (one porphyritic pyroxene, the other porphyritic olivine). A reasonable working hypothesis is that Kaba magnetite and fayalite formed by the same process (inferred to be aqueous alteration) responsible for the generation of the other materials plotting near the upper end of the CCAM array. If the initial composition of the oxidant H2O was the same everywhere on the CV parent body, it follows that the composition of the H2O reservoir invoked in the previous section to explain the Mokoia data should be the one responsible for other alteration products plotting on the array (and, presumably, for the compositions of closely related materials such as dark inclusions that plot somewhat away from the array (Clayton and Mayeda, 1999)). Jabeen et al. (1998) and Ash et al. (1999) recently showed evidence of alteration related processes within chondrules of CV Allende.

Choi et al. (1997) noted that the difference in Δ17O between magnetite and olivine in Allende indicate that the oxidant responsible for converting metallic Fe to magnetite had a higher Δ17O than that incorporated in most chondrule olivine. A similar conclusion was reached by Rubin et al. (1990) based on their studies of coexisting chondrules and rims in Allende.

Although it is possible that the oxidant H2O incorporated into the CV parent body is exotic (i.e., that it originated in a part of the nebula well separated from the CV formation region in time or space), the simpler hypothesis is that this water is representative of the H2O (g) that was the dominant O reservoir in the CV formation region. Our best estimate of the Δ17O of this H2O, ~1‰, is much lower than the estimate (~7‰) of the Δ17O of the oxidant at the LL formation region based on the Choi et al. (1998) studies of magnetite in Semarkona and Ngawi. Choi et al. (1998) mentioned the possibility that the composition of the nebular gas changed with time and that the simplest explanation of the correlation between Δ17O and degree of oxidation observed in the bulk compositions of the three ordinary chondrite groups is that Δ17O of the nebular gas increased with time. If we accept this picture and assume that the change was monotonic throughout the history of the solar nebula, the implication is that CV chondrites formed earlier than the ordinary chondrites. Wasson (2000) reviewed the age data and found them to be ambiguous, but there are some hints that the CV chondrites are indeed older that ordinary chondrites.

SUMMARY

Studies of two secondary (alteration) phases in the closely related CV chondrites Kaba and Mokoia show important differences and similarities. Although the Δ17O values in both phases are the same within experimental uncertainties for both phases in both chondrites, δ18O in the fayalite of Mokoia is ~20‰ higher than that in the magnetite, whereas δ18O values in these two phases in Kaba are not resolvably different. We interpret these differences to primarily reflect differences in the formation sequence of magnetite and fayalite: magnetite and fayalite seemed to have formed simultaneously in Mokoia, whereas fayalite formed by replacement of magnetite in Kaba. Our results show that the Δ17O of the oxidant (probably H2O) responsible for the formation of magnetite in the most primitive oxidized CV chondrites had Δ17O ~0‰, considerably lower than the Δ17O value of ~7‰ inferred for the oxidant present in the LL3 parent body (Choi et al., 1998). If we follow the suggestion of Choi et al. (1998) and interpret this difference in terms of a monotonic upward drift of the Δ17O of nebular O with time, it follows that the CV chondrites formed earlier than the ordinary chondrites. We are carrying out similar studies on other primitive, magnetite-bearing chondrites to see if the same pattern (of higher Δ17O in magnetite than in chondrules) is found.

Acknowledgments—We thank L. A. Leshin, C. D. Coath, J. P. Greenwood, G. Jarzembinski and, especially, K. D. McKeegan for advice regarding technical assistance with the ion microprobe; J. Valley kindly provided LP204 magnetite grains. We thank A. E. Rubin, J. Greenwood, and E. R. D. Scott for useful discussions, and S. Yoo for technical support. Mokoia and Kaba thin sections were kindly provided by M. E. Zolensky (Johnson Space Center) and G. J. MacPherson (Smithsonian Institution). The UCLA ion probe was made possible by a gift from the W. M. Keck Foundation and is supported by NSF grant EAR 95-09641 and NASA grant NAGW 4112. This research effort was largely supported by NSF grant EAR 98-05229 (J. T. W.) and by NASA grant NAG 5-4212 (K. Keil). This is HIGP publication number 1117 and SOEST publication number 5271.

Editorial handling: G. Wetherill

REFERENCES

