Hafnium isotope evidence from Archean granitic rocks for deep-mantle origin of continental crust

Martin Guittreau a, Janne Blichert-Toft a,e, Hervé Martin b, Stephen J. Mojzsis a,c, Francis Albarède a

a Laboratoire de Géologie de Lyon, École Normale Supérieure de Lyon and Université Claude Bernard Lyon 1, CNRS UMR 5276, 46 Allée d’Italie, 69600 Lyon, France
b Laboratoire Magmas et Volcans, Université Blaise Pascal, CNRS UMR 6524, 5 Rue Kessler, 63038 Clermont-Ferrand, France
c Department of Geological Sciences, University of Colorado, 2200 Colorado Avenue, Boulder, Colorado 80309-0399, USA

dedicated article letters

ABSTRACT

Combined whole-rock and zircon MC-ICP-MS Lu–Hf isotope data are reported for a large collection of Archean granitoids belonging to typical tonalite–trondhjemite–granodiorite (TTG) suites. Our data demonstrate that the time-integrated Lu/Hf of the mantle source of TTGs has not significantly changed over the last 4 Gy. Continents therefore most likely grew from nearly primordial unfractionated material extracted from the deep mantle via rising plumes that left a depleted melt residue in the upper mantle. The deep mantle could retain its primitive relative element abundances over time because sinking plates are largely stripped barren of their oceanic and continental crust components at subduction zones; this process results in only small proportions (≤ 15–25%) of present-day continental mass getting recycled to great depths. Zircon populations extracted from the analyzed TTGs have Hf isotopic compositions broadly consistent with those of their host whole-rocks, whereas the U–Pb system in the same grains is often disturbed, causing a discrepancy that creates spurious initial εHf values. This problem is endemic to the Archean detrital zircon record and consistent with experimental results bearing on the relative retentivity of Hf vs. U and Pb in zircon. We argue that this behavior biases the Archean zircon record toward negative εHf values, which are at odds with the present TTG data set. If Hadean Jack Hills zircons are considered in light of these results, the mantle source of continents has remained unchanged for the last 4.3 Gy.

1. Introduction

The principle that growth of continents depletes the upper mantle of its most fertile fraction goes back several decades (Hoffman, 1988; Jacobsen and Wasserburg, 1979). A widely held tenet is that continental crust grows either by melting of the oceanic crust (Drummond and Defant, 1990; Martin, 1993) or by fluxing the mantle wedge above subduction zones (Kelemen, 1995). An alternative view holds that continents form through magmatic processing at subduction zones, not of regular oceanic crust, but of oceanic plateaus (Abouchami et al., 1990; Boher et al., 1992; Hawkesworth et al., 2010; Stein and Goldstein, 1996), which would account for the apparent episodic character of crustal growth (Albarède, 1998a; Patchett et al., 1981). Hafnium isotopes in zircons have become a widely used tracer of crustal evolution. Zircon is a ubiquitous accessory phase in all granitic rocks. It resists weathering extremely well and, hence, detrital zircons are abundant in river bedload and sands. In addition, the very low Lu/Hf of zircons allows for accurate determination of 176Hf/177Hf at the time of zircon crystallization. The advent of laser-ablation Lu–Hf isotope analysis of igneous and detrital zircons has triggered a surge in voluminous data sets with major implications for the understanding of crustal growth (Condie et al., 2009a). Yet, because of the relative scarcity of samples older than 3.4 Ga and ongoing debates over the integrity of the chronological information carried by old zircons, the ancient Hf isotope record appears less reliable than that of younger samples. This has introduced an uncomfortable degree of uncertainty into interpretations of Earth’s earliest history based on Hf isotopes. Better insights into the geodynamical nature of the Hadean and early Archean eons are crucial in this regard because these times follow the demise of the postulated terrestrial magma ocean, and arguably witnessed the onset of plate tectonics.

The ≥ 4.1 Ga detrital zircons from Jack Hills, Western Australia, have attracted considerable attention because they are the sole repositories so far of direct information about the Hadean crust. Their host granites have been suggested to represent the remelting of a ca. 4.35 Ga protocrust, which carried the geochemical fingerprint of the latest residual liquids of the magma ocean, dubbed as KREEP-like by analogy with the lunar magmatic
component enriched in K, rare-earth elements, and P (Blichert-Toft and Albarède, 2008; Kemp et al., 2010). It was further proposed that a connection exists between this protocrust and the source of the oldest TTGs (tonalite-trondhjemite-granodiorite) as both show indications of a mantle strongly enriched in incompatible elements (Blichert-Toft and Albarède, 2008). In order to further explore the potential relation between TTGs and the earliest Hadean/Archean crust, we report here Lu–Hf isotopic data for 2.5–4.0 Ga TTGs from a large number of localities worldwide, including most known cratons (Antarctica, Australia, Brazil, Canada, China, Greenland, India, Russia, Scandinavia, Siberia, South Africa, and Swaziland). In order to assess potential inheritance issues, Lu–Hf and Pb–Pb isotopic data for individual zircons from about half of the analyzed TTG samples also are provided. The complete data set and the details of the analytical techniques (solution and laser-ablation MC-ICP-MS for whole-rocks and single zircons) together with sample descriptions are given in the following sections and the online Supplementary Material.

2. Samples

The analyzed sample suite reported herein comprises 141 TTG rocks of worldwide distribution (see Table 1 in the Supplementary Material) ranging in age from 2.5 to 4.0 Ga. The samples were either donated by colleagues during the course of this study or collected in the field by the authors. The Archean terranes represented by the samples are Enderby Land (the Napier Complex, Antarctica); the Pilbara and Yilgarn Cratons (Western Australia), the North Atlantic Craton (the Itsaq Gneiss Complex), the Slave Craton (the Acasa Gneiss Complex, Northwest Territories in Canada), the Superior Province (gneisses of the Nuvvuaguituq supracrustal belt, Québec, Canada), the Indian Craton (Dharwar, Bastar), the Kaapvaal Craton in southern Africa (Barberton, Ancient Gneiss Complex), the Baltic Shield (Finland, Norway, and Russia), the Tungus–Anabar Shield (the Sharyzhalgay uplift, central Siberia), the North China Craton (Anshan), and the São Francisco Craton (Sete Voltas, Brazil). The petrology, mineralogy, and major and trace element compositions of most of the samples, as well as their isotope compositions (notably Sr and Nd), are well documented in the literature. A description of the samples collected by the authors is given in the Supplementary Material.

3. Analytical techniques

Whole-rock sample splits used for isotope analysis were crushed and powdered in agate mortars. Zircons, if not previously separated and accompanying the whole-rock samples, were extracted using standard heavy liquid techniques and a Frantz isodynamic magnetic separator.

3.1. TTG whole-rock Lu–Hf isotope analysis by solution MC-ICP-MS

After dissolution in Parr bombs, Lu and Hf were separated from ~250 mg aliquots of whole-rock powder by ion-exchange column chromatography (at the École Normale Supérieure clean laboratory in Lyon, France) and measured for their isotopic compositions by MC-ICP-MS (Nu Plasma HR) according to procedures described elsewhere (Blichert-Toft, 2001; Blichert-Toft et al., 2002, 1997; Blichert-Toft and Puchtel, 2010). Lutetium and Hf concentrations were determined by isotope dilution using a > 98% pure mixed 176Lu–180Hf spike. The JMC-475 Hf standard was analyzed in alternation with the TTG samples and the mass fractionation-corrected 176Hf/177Hf ratio gave 0.282164 ± 0.000015 (2σ; n = 145) over the 2-yr period during which these data were collected. Since this value is identical within errors to the accepted value for the JMC-475 Hf standard of 0.282163 ± 0.000009 (Blichert-Toft et al., 1997), no correction was applied to the data. Total procedural blanks for Hf and Lu were < 20 pg.

The ages used to calculate the initial Hf isotopic compositions of the TTGs are the oldest concordant and reproducible ages obtained on single zircons with the Pb–Pb and U–Pb chronometers. Some of these ages were determined in this study by solution and/or laser-ablation MC-ICP-MS (see below), while others are from the literature or, in rare cases, personal communications based on unpublished data. All ages were measured on zircons that were taken either from the exact same samples as analyzed here, or from different samples from the same outcrop.

3.2. Zircon Lu–Hf and Pb–Pb isotope analyses by, respectively, solution MC-ICP-MS and ICP-MS

The TTG samples were ground to sand-sized grains and sieved to collect mineral fractions between 300 and 80 µm. The zircons were separated from these fractions using a Frantz isodynamic magnetic separator and heavy liquids. Single zircons were subsequently handpicked under a binocular microscope and abraded in an air abrasion device similar to that of Krogh (1982) to eliminate outer rims that may be either recrystallized material or represent younger overgrowths. Because severely metamict grains are particularly fragile, they tend to break or be entirely abraded away in this procedure and hence are eliminated by abrasion. Selection of individual zircons under optical microscopy favored the clearest grains without visible inclusions. Pressure and abrasion times were calibrated experimentally and were critical parameters because of the fragile nature of old, potentially metamict zircons. Cathodo-luminescence (CL) images of most of the TTG zircon populations were acquired on a JEOL JSM-5910LV in Clermont-Ferrand and used to identify structural heterogeneities, as well as to estimate average potential overgrowth widths in order to abrade the zircons to recover only their cores. Because the zircon grains were always covered by metal dust after the abrasion procedure, and because (younger) outgrowths may not have been entirely removed in the process, the zircons were further leached prior to dissolution. We deliberately used short leaching times with concentrated acids (see details below) as opposed to the standard procedures described by Corfu (2000) and Das and Davis (2010), which call for long durations with weak acids. This is because Hadean and Archean zircons are old enough to have been massively exposed to the alpha-decay of U-series isotopes and, hence, readily dissolve in acid at room pressure and temperature due to their often metamict condition. The use, therefore, of a short-duration bath of strong acid results in well-leached grain surfaces, which is where the potential contamination resides. This approach to eliminate younger, more resistant, external margins does not result in dissolution of partly amorphized cores. The use of more dilute acids for longer durations of time, by contrast, potentially results in the preferential dissolution of the most damaged parts of the zircons, such as the oldest igneous core regions. This procedure could, therefore, destroy the principal parts of the zircons, which are the most important for studies such as the present one, while preserving younger, more resistant domains such as overgrowths or other less damaged parts that include the unwanted material. The abundant cracks typical of ancient metamict zircons and their old igneous cores represent a ready conduit for weak acids at long exposure times. To avoid this problem, our three-step leaching procedure consists of successive baths of concentrated double-distilled HF (a few minutes at room temperature),
concentrated distilled HNO₃ (a few minutes at room temperature), and 6 N distilled HCl (10 min at 135 °C). Subsequently, individual abraded and leached zircons were transferred into 0.5 ml Savillex® beakers to which a mixture of concentrated double-distilled HF and traces of concentrated distilled HNO₃ were added. Batches of 16 Savillex® beakers were loaded in a 4748 Parr® bomb for digestion in an oven at 240 °C for at least 24 h (Parrish, 1987). The dissolved grains were then transferred into clean Savillex® beakers, dried down, and re-dissolved in 1 ml (to be able to remove a precise aliquot volume) distilled 8 N HNO₃ on a hot plate. A 5% aliquot (50 μl) was taken for each sample for Lu/Hf ratio measurement and the HNO₃ subsequently evaporated to dryness. Lutetium and Hf concentrations were determined on the aliquot using a Thermo-Finnigan Element 2 ICP-MS at the École Normale Supérieure in Lyon, and the ¹⁷⁶Lu/¹⁷⁷Hf ratios were calculated from the measured concentrations. The 95% that remained in the beakers from the original zircon solution was dissolved in distilled 1 N HCl:0.1 N HF and loaded onto 0.18 ml Teflon cation-exchange columns (AG50W-X8, 200–400 mesh). Hafnium is in the form of a negative fluoride complex and therefore does not stick on this column and is immediately recovered. Lead is subsequently eluted with distilled 2.5 N HCl. The Pb isotope compositions were measured on the Element 2 ICP-MS and the Hf isotope compositions on the Nu Plasma HR MC-ICP-MS, both at the École Normale Supérieure in Lyon.

The JMC-475 Hf standard was used in alternation with the zircon samples and the mass fractionation-corrected ¹⁷⁷Hf/¹⁷⁷Hf ratio gave 0.282162 ± 0.000017 (2σ; n = 87) over the 2-yr duration of sessions of single zircon data collection. Again, this value is within error bars of the accepted value for the JMC-475 Hf standard eliminating the need for normalization. Total procedural blanks were n < 10 pg for Lu and < 20 pg each for Hf and Pb. The relative abundance of oxides was < 2%, which represents a negligible correction for the present analyses. Fluctuations in the ion beams of Lu, Hf, and Pb were monitored using a 1 ppb internal standard. The isobaric interference of ²⁰⁴Hg on ²⁰⁴Pb was corrected using ²⁰²Hg and a ²⁰⁴Hg/²⁰²Hg ratio of 0.2301 to determine ²⁰⁴Pb/²⁰⁶Pb ratios that were always below 0.001. For the Hf isotope measurements on the Neptune, mass bias, isobaric interferences (Yb and Lu on mass 176), and instrument drift were corrected according to the procedures described by Bahlburg et al. (2011) and Gaschnig et al. (2011). The precision on ⁶⁰⁰T (T₀) can be assessed by examination of the 2-σ intervals of the 396 in-situ measurements undertaken here (Fig. 1). The analyses form a consistent histogram (Fig. 1) with no objective justification for ignoring (i.e., discarding) specific measurements.

Fig. 1. Histogram of 2-σ error bars for in-situ Hf isotope measurements of single zircons in epsilon units. This plot shows that the data set is of consistent quality: for a single population of points with a similar number of measurements, the variances are expected to follow a chi-squared distribution. About 90 percent of the samples have 2-σ errors < 3 epsilon units.

3.3. Zircon Lu–Hf and U–Pb isotope analyses by, respectively, laser-ablation MC-ICP-MS and ICP-MS

The zircons analyzed by laser-ablation MC-ICP-MS were hand-picked under a binocular microscope, placed on double-sticky tape, and mounted in epoxy. The 2.54 cm epoxy mounts were first polished on 5 μm silicon-carbide mats and then with 0.5 μm diamond paste and distilled water. Prior to laser ablation analysis, the zircons were imaged by CL using either a Leo Supra 35VP scanning electron microprobe (SEM) at the University of Idaho (Moscow), or a JEOL JSM6510 SEM at the Centre de Recherches Pétrographiques et Géochimiques in Nancy (France). The acquired CL images were used to assess the internal structure of the zircons in order to target their cores and areas where the best-preserved parts with magmatic zoning were still visible. U–Pb analyses were carried out using a 213 nm New Wave Research Nd-YAG laser connected to a ThermoFinnigan Element 2 (LA-ICP-MS). Hafnium isotope measurements were performed using the same laser but connected to a ThermoFinnigan Neptune (LA-MC-ICP-MS). All laser ablation Hf and Pb isotope work was carried out at the Department of Geology of Washington State University, Pullman. The ablation cell for both types of measurements was filled with He. The carrier gas used in both instruments was Ar, but N₂ was added to increase the Hf ion beam intensity. For the U–Pb isotope analyses, the laser spot size was 30 μm using a frequency of 5 Hz in order to avoid saturation of the collectors due to the high radiogenic Pb abundances in Archean zircons. For particularly U-rich grains, the frequency was reduced to 3 Hz. For the Hf isotope analyses, laser spot sizes of 40 μm at 10 Hz were used. U–Pb corrections were made by sample-standard bracketing using both Peixe (Dickinson and Gehrels, 2003) and FC-1 (Paces and Miller, 1993) zircon standards. Isobaric interferences of ²⁰⁴Hg on ²⁰⁴Pb were corrected using ²⁰²Hg and a ²⁰⁴Hg/²⁰²Hg ratio of 0.2301 to determine ²⁰⁴Pb/²⁰⁶Pb ratios that were always below 0.001. For the Hf isotope measurements on the Neptune, mass bias, isobaric interferences (Yb and Lu on mass 176), and instrument drift were corrected according to the procedures described by Bahlburg et al. (2011) and Gaschnig et al. (2011). The precision on ⁶⁰⁰T₀ (T₀) can be assessed by examination of the 2-σ intervals of the 396 in-situ measurements undertaken here (Fig. 1). The analyses form a consistent histogram (Fig. 1) with no objective justification for ignoring (i.e., discarding) specific measurements.
and with a range that is consistent, given the large number of data, with that obtained in previous investigations on the same instrument.

3.4. The zircon Hf isotope database

A zircon Hf isotope database was compiled for this study in order to provide a broader context within which the TTG data are discussed. It comprises 12,786 data points, with the vast majority of the data (91%) being derived from detrital zircons (11,698). The references that this compilation is based on are listed in the Supplementary Material. Zircons with a U–Pb discordance in excess of 5% and with Th/U ratios >1 and <0.15, as calculated from their \(^{208}\text{Pb}^{*}/^{206}\text{Pb}\) and ages, were disregarded. The initial \(\varepsilon_{\text{Hf}}(T_0)\) values of literature samples were calculated using the CHUR values of Bouvier et al. (2008) \(\left(176\text{Hf}/177\text{Hf} = 0.282785\right)\) and \(176\text{Lu}^{177}\text{Hf} = 0.0336\) and the \(^{176}\text{Lu} \) decay constant of \(1.867 \times 10^{-11}\) of Söderlund et al. (2004), identical to the original determination by Scherer et al. (2001) but with reduced error bars.

4. Results

4.1. TTG whole-rock and single zircon Lu–Hf isotope data

The initial \(\varepsilon_{\text{Hf}}(T_0)\) of the 141 TTG whole-rock samples analyzed here (Table 1, Supplementary Material) are shown in Fig. 2 on the background of zircon data from both the literature (12,786 zircons) and the present study (340 zircons analyzed by wet chemistry and in-situ techniques filtered from 615 zircons from 72 of the 141 TTGs; Tables 2–6, Supplementary Material). As pointed out by Zeh et al. (2007), igneous zircons extracted from the same sample often show a positive correlation between their measured \(\varepsilon_{\text{Hf}}(T_0)\), indicating that zircons with strongly negative \(\varepsilon_{\text{Hf}}(T_0)\) have experienced severe Pb loss, while their Hf isotopes have remained unaffected. Lenting et al. (2010) demonstrated experimentally that these different conducts of the U–Pb and Lu–Hf isotope systems are a general feature of zircons under metamorphic conditions. This means that for these zircons, their initial Hf isotopic compositions are calculated at the wrong age and result in incorrect initial \(\varepsilon_{\text{Hf}}\) values. This conclusion applies to a substantial fraction of the single zircons in Fig. 3. We therefore regard all samples for which \(\varepsilon_{\text{Hf}}(T_0)\) correlates with age as suspect. This is the reason why discordant zircons (for LA-ICP-MS and ion microprobe analyses) and zircons with distinctly non-magmatic Th/U ratios (for solution MC-ICP-MS analyses) have been filtered out in Fig. 2. Fig. 4 shows that, after filtering, 10% of the zircons from the laser-ablation data set and 18% of the zircons from the solution data set fall outside a band of \(\pm 5\) epsilon units about the 1:1 correlation line, with 75% and 61% of the data, respectively, falling within a \(\pm 2\) epsilon unit band about this line. Given the substantial scatter of \(\varepsilon_{\text{Hf}}(T_0)\) observed in Fig. 2 at a given age, we consider that the \(\varepsilon_{\text{Hf}}(T_0)\) in the zircons and their host TTG whole-rocks analyzed in this work are reasonably consistent. This indicates that the assumed TTG ages are correct and that the TTG Lu–Hf isotope systematics have not been significantly disturbed subsequent to TTG magma crystallization. Fig. 4 also demonstrates that the inheritance of older zircons plays a negligible role and that laser-ablation and solution chemistry zircon isotope data are mutually consistent. This last observation is further strengthened by the results shown in Fig. 5, which displays the similar \(176\text{Hf}/177\text{Hf}\) ratios obtained on zircons that were first analyzed by laser-ablation, then dismounted, dissolved, and measured by solution MC-ICP-MS. Additionally, Fig. 5 illustrates that both present-day and initial Hf isotope compositions agree between the two techniques, whereas Pb–Pb ages and \(176\text{Lu}^{177}\text{Hf}\) often disagree to variable degrees.

Given the large size of the database (12,786 samples), a 2-dimensional histogram presentation has been chosen for Fig. 2 because it allows the main data structure to stand out and minimizes the spread caused by outliers. The present Hf isotope data corroborate the observation that suprachondritic \(\varepsilon_{\text{Hf}}(T_0)\) values existed prior to 2.9 Ga (Hoffmann et al., 2011; Vervoort and Blichert-Toft, 1999). The Archean TTG whole-rock data in this study tend to populate the low-density domains of \(\varepsilon_{\text{Hf}}(T_0) > 0\), with the exception of samples older than 3.8 Ga. These data are, therefore, consistent with the \(\varepsilon_{\text{Hf}}(T_0) > 0\) commonly reported for these rocks (Hoffmann et al., 2011; Vervoort and Blichert-Toft, 1999), and attests to overall congruent Hf–Nd isotope behavior. Moderately radiogenic Nd and Hf is a common feature of Archean and early Proterozoic mantle-derived magmas.
and non-parametric Wilcoxon tests based on initial 176Hf/177Hf et al., 2005), even for homogeneous grains. Parametric Student TTG zircon population, 176Hf/177Hf (ratios show that the data set of Harrison et al. (2005) is

Jack Hills zircons (Blichert-Toft and Albar

suggest that the apparently uncommon radiogenic Hf among upper mantle (e.g., Workman and Hart, 2005). In this context, we

stratified with Isoplot 176Hf/177Hf (T_0) of the zircon populations. Diagrams (a) illustrate that, among a given TTG zircon population, 176Hf/177Hf (T_0) is generally consistent within the quoted error bars, whereas 207Pb/206Pb ages vary well beyond analytical uncertainties for discordant grains (red diamonds). In contrast, discordant grains (purple diamonds) have consistent 176Hf/177Hf (T_0) and 207Pb/206Pb ages. Note that in panels C and D, single zircons analyzed by solution chemistry (green diamonds) show similar behavior as zircons analyzed by laser-ablation. The sample displayed in panels D further shows that the solution zircon population has slightly more radiogenic Hf than the in-situ zircon population resulting in a shift of about one epsilon unit. This is due, likely, to slight overcorrection of the large 176Yb and 176Lu isobaric interferences for the laser-ablation analyzed zircons, whereas the zircons analyzed by solution chemistry and, therefore, free of any isobaric interferences due to efficient purification of Hf by ion-exchange chromatography, give more reproducible 176Hf/177Hf (T_0). Despite the complex metamorphic histories of TTGs, it appears that single zircons of these rocks analyzed by solution chemistry yield the same results as zircons analyzed by laser-ablation, indicating that whether the zircon populations are simple, or the combined air-abrasion and leaching techniques undertaken in the present study were efficient enough to preserve only the igneous cores of the zircons. Note also that 176Hf/177Hf (T_0) of the TTG whole-rocks (black circles) are consistent with 176Hf/177Hf (T_0) of the zircon populations. Diagrams (b) show the effect of perturbed (or discordant) ages (i.e., different from the crystallization age) on the 176Hf/177Hf (T_0) of the zircon populations. Because of the very low 176Lu/177Hf ratio (\sim0.0005) of zircons (Fig. 9), their 176Hf/177Hf (T) is virtually insensitive to age corrections, while this is not true for 176Lu/177Hf (T_0). Slopes regressed with Isoplot 6 indicate apparent 176Lu/177Hf ratios of \sim0, which is incompatible with radiogenic ingrowth in any geological reservoir but zircons. Note that these trends are particularly well defined for the zircons in panels A-(b) and B-(b) compared to those in panels C-(b) and D-(b) because of a larger overall spread in 207Pb/206Pb ages for the former two samples. It appears that discordant zircons give reproducible 176Hf/177Hf (T_0) and 207Pb/206Pb ages within error bars. Diagrams (c) are Tera–Wasserburg concordia plots that demonstrate that it is disturbance of the U–Pb isotopic system (206Pb loss) which is responsible for the age variability. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. 176Hf/177Hf (T_0) and 176Lu/177Hf (T_0) versus Pb–Pb age diagrams combined with Tera–Wasserburg 207Pb/206Pb versus 206Lu/206Pb concordia plots for zircon populations from four representative TTG samples. Panels A, B, C, and D refer to, respectively, samples AG09-008gt (Acasta gneiss, Slave Craton, Canada), AG09-016 (Acasta gneiss, Slave Craton, Canada), SV11 (Sete Voltas, São Francisco Craton, Brazil), and 40-03 (Onot terrane, Tungus-Anabar shield, Siberia). Diagrams (a) illustrate that, among a given TTG zircon population, 176Hf/177Hf (T_0) is generally consistent within the quoted error bars, whereas 207Pb/206Pb ages vary well beyond analytical uncertainties for discordant grains (red diamonds). In contrast, discordant grains (purple diamonds) have consistent 176Hf/177Hf (T_0) and 207Pb/206Pb ages. Note that in panels C and D, single zircons analyzed by solution chemistry (green diamonds) show similar behavior as zircons analyzed by laser-ablation. The sample displayed in panels D further shows that the solution zircon population has slightly more radiogenic Hf than the in-situ zircon population resulting in a shift of about one epsilon unit. This is due, likely, to slight overcorrection of the large 176Yb and 176Lu isobaric interferences for the laser-ablation analyzed zircons, whereas the zircons analyzed by solution chemistry and, therefore, free of any isobaric interferences due to efficient purification of Hf by ion-exchange chromatography, give more reproducible 176Hf/177Hf (T_0). Despite the complex metamorphic histories of TTGs, it appears that single zircons of these rocks analyzed by solution chemistry yield the same results as zircons analyzed by laser-ablation, indicating that whether the zircon populations are simple, or the combined air-abrasion and leaching techniques undertaken in the present study were efficient enough to preserve only the igneous cores of the zircons. Note also that 176Hf/177Hf (T_0) of the TTG whole-rocks (black circles) are consistent with 176Hf/177Hf (T_0) of the zircon populations. Diagrams (b) show the effect of perturbed (or discordant) ages (i.e., different from the crystallization age) on the 176Hf/177Hf (T_0) of the zircon populations. Because of the very low 176Lu/177Hf ratio (\sim0.0005) of zircons (Fig. 9), their 176Hf/177Hf (T) is virtually insensitive to age corrections, while this is not true for 176Lu/177Hf (T_0). Slopes regressed with Isoplot 6 indicate apparent 176Lu/177Hf ratios of \sim0, which is incompatible with radiogenic ingrowth in any geological reservoir but zircons. Note that these trends are particularly well defined for the zircons in panels A-(b) and B-(b) compared to those in panels C-(b) and D-(b) because of a larger overall spread in 207Pb/206Pb ages for the former two samples. It appears that discordant zircons give reproducible 176Hf/177Hf (T_0) and 207Pb/206Pb ages within error bars. Diagrams (c) are Tera–Wasserburg concordia plots that demonstrate that it is disturbance of the U–Pb isotopic system (206Pb loss) which is responsible for the age variability. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
incomplete elimination of the outer parts of the grains after abrasion and leaching. The horizontal spread towards more radiogenic Hf isotope compositions observed for zircons analyzed by solution chemistry is attributed to zircons is insignificant. The general consistency of the two types of data indicates mutual agreement. The tick marks and numbers on the 1:1 line refer to the CHUR model of the common mid-crust at that time.

4.2. Impact on the results from the choice of reference frame for the Lu–Hf isotope system

The modern chondritic Lu–Hf reference may be perceived as an issue but, beyond the confusion introduced by multiple normalization values, the choice of one over the other is inconsequential as the two reference frames currently in use are nearly identical within the quoted error bars. For example, adopting the 2008 chondritic parameters (Bouvier et al., 2008) instead of the 1997 reference (Blichert-Toft and Albarède, 1997) changes the epsilon values from +0.45 for modern samples to −0.36 at 3 Ga, which is within the analytical errors of both the samples and the reference parameters themselves.

4.3. Comparison between laser-ablation and single grain dissolution techniques

Forty-one carefully selected zircons were analyzed by laser-ablation and then extracted from their mounts to be dissolved separately according to the single grain dissolution technique described earlier (Table 6, Supplementary Material). The zircons were chosen based on CL imagery, concordant ages, small 176Hf/177Hf error bars, and reproducible age and/or similar 176Hf/177Hf from different spots on the same grain. The results are presented in Fig. 5 and illustrate that 207Pb/206Pb ages (Fig. 5a) as well as 176Lu/177Hf (Fig. 5b) measured by solution and laser-ablation often do not agree. In particular, the solution Pb–Pb ages are systematically younger than the laser-ablation ages and the Lu/Hf ratios determined by laser-ablation are higher in most cases than those measured by solution. In contrast, 176Hf/177Hf is far more consistent between the two techniques, forming a positive correlation with a slope of 0.97 ± 0.07 (Fig. 5c). The same is true for initial 176Hf/177Hf, which plots on a trend with a slope of 0.94 ± 0.08 (Fig. 5d). Although age and 176Lu/177Hf disagree, the latter is so low that differences in calculated initial Hf isopic compositions due to age correction are generally insignificant. Considering metamictization processes and volume diffusion theory, these results are consistent with experiments of Cherniak et al. (1997a, 1997b) that show Hf to be a highly retentive element within the zircon lattice, whereas Pb and Lu are relatively mobile. This is consistent with the experiments of Lenting et al. (2010). By metamictization we refer to partly and localized destroyed zircon lattices, not to completely amorphized grains (Utsunomiya et al., 2004). We attribute age differences to localized Pb loss within zircon grains or their inclusions (Carson et al., 2002) (not sampled in general by laser-ablation but unavoidable by solution chemistry) and 176Lu/177Hf ratio differences to magmatic zonation within the zircons and/or perhaps Lu loss. The observed 176Lu/177Hf differences between the two techniques also could derive from Lu–Hf fractionation during acid leaching of the abraded zircon grains (Lu being a 3 high-field-strength element), as well as 176Lu/177Hf (Fig. 5b) measured by solution and laser-ablation of selected spots, may not reflect the time of zircon crystallization if they were subject to ancient Pb loss episodes.

5. Discussion

Fig. 2 reinforces evidence accumulated over half a century (Condie et al., 2009a; Gastil, 1960) that the crustal growth record is episodic. The conspicuous gap in crustal growth at 2.3–2.4 Ga identified by Condie et al. (2009a) also is evident in Fig. 2. We will now focus on the preservation of the crustal growth record, the effect of crustal reworking, and the nature of crustal growth.

5.1. Preservation of the crustal growth record

It has been proposed that age peaks represent artifacts of preservation (Gurnis and Davies, 1986; Hawkesworth et al., 2010). If so, the U–Pb age records of igneous and detrital zircons
should mirror each other, which is precluded by available evidence (Condie et al., 2009a). Fig. 2 illustrates that, prior to 1.7 Ga, zircon $\varepsilon_{Hf}^{(0)}$ values decrease during individual orogenic cycles and, therefore, the degree of crustal reworking increased with particularly clear examples at 2.1, 2.4, and 3.8 Ga. Evidence that at the time of supercontinents young terranes are selectively removed remains unsubstantiated. In contrast, evidence shows that continental assembly efficiently accretes landmasses and oceanic plateaus (Boher et al., 1992; Schubert and Sandwell, 1989).

5.2. Juvenile versus reworked orogenic segments.

The impact of crustal reworking on the interpretation of the present data set must be assessed. Many orogenic belts consist of vast expanses of ‘juvenile’ areas, in which the contribution of pre-existing continental material to new crust is minor and crustal residence time is short. This is in particular the case of Abitibi (2.7 Ga) (Davis et al., 2005), the Birimian (2.1 Ga) of West Africa (Boher et al., 1992), and Arabia (0.6 Ma) (Stein and Goldstein, 1996). The orogenic cycle, which leads from the protolith to new stable continental crust, is invariably short (< 150 Ma). In contrast, radiogenic and stable isotope geochemistry of granites show that some other orogenic segments are clearly reworked, with the 1.8 Ga terranes of the Svecofennian (Condie et al., 2009a; Hoffman, 1988; Patchett et al., 1987) being a prime example. More than three decades of geochemical work performed on recent granites have demonstrated that if crustal reworking is indeed common, its importance in a particular orogenic segment can be readily and unequivocally assessed by combining oxygen and radiogenic isotopes. An illustrative example of such disentanglement is the 90–130 Ma old Peninsular Range batholith of California (DePaolo, 1981; Kistler et al., 2003; Taylor and Silver, 1978). By restricting the analysis to the granites with oxygen isotopes close to mantle values, the least radiogenic Sr, and the most radiogenic Nd (and Hf), the ‘mantle component’ and ‘mantle-like’ granites clearly show up in the data and can be targeted for further insight into the nature and evolution of their mantle source. With the renewed interest for the understanding of crustal growth, a similar approach was successfully adopted by Kemp et al. (2007, 2006) for older granites. Here we therefore focus on the most radiogenic part of the two-dimensional histogram of Fig. 2 (the most negative $\varepsilon_{Hf}^{(0)}$ values clearly being the products of reworking). This strategy is supported by the lack
of strong contrast between orogens in which the bulk of the material is juvenile, such as in the Abitibi (2.7 Ga) and the Birimian (2.1 Ga), and those dominated by reworking, such as the 1.8 Ga terranes of the Svecofennian shield. The comparison of these terranes shows that assimilation of older crust does not define the first-order Hf isotopic characteristics of crustal segments. In addition, the effect of assimilation of continental crust on the apparent time-integrated Lu/Hf ratio of the mantle source is in any case minimal for most of crustal history: a given variation deHf is equivalent to a relative variation of the time-integrated Lu/Hf of deHf/21.8/C2/(4.5/C0T), where T is the age in Ga of the orogeny in question. Using as deHf the difference between the density maxima (Fig. 2) and the mantle eHf values at the same age from Vervoort and Blichert-Toft (1999), this effect is 720% at 3.5 Ga and 710% at 2.5 Ga.

5.3. The nature of crustal growth.

The time-integrated 176Lu/177Hf (parent–daughter) ratios of the source were calculated from the age and eHf (T0) of each sample using the eHf (4.568 Ga) value of Bouvier et al. (2008). This use of apparent time-integrated Sm/Nd and Lu/Hf is essentially equivalent to the μ analysis of Pb isotope evolution, and has been used for decades in order to decipher the dynamics of planetary mantles (e.g., Nyquist and Shih, 1992). Fig. 8 shows that, when the TTG data are taken into account, the 176Lu/177Hf ratio of the mantle source of continents has not varied much (0.032–0.038 (±10%)) with respect to the chondritic value of 0.0336 (Bouvier et al., 2008) over the last 3.8 Gy. Again, the pre-3.8 Ga samples (notably Acasta and Jack Hills) are exceptions (Jack Hills zircons not visible in Fig. 8 because of their relative scarcity) that may attest to either undersampling of the crust from that time or some transient effects inherited from the original differentiation of the Earth. Highly radiogenic eHf (T0) values seem to have become common only in the late Proterozoic. The dramatic reduction in Lu/Hf variability during the first 0.7–1 Gy mirrors the possible reduction in 142Nd/144Nd variability as put forth by Bennett et al. (2007). This decrease in
isotopic variability early in Earth’s history, as suggested by two independent isotopic records, is striking and can be interpreted in different ways. The time interval in question is conspicuously reminiscent of the half-life of 235U, the major provider of radiogenic heat in the Hadean and which, for all geophysical intents and purposes, is an ‘extinct’ radioactivity. The decay of 235U clearly is a forcing parameter for mantle convection. The termination of extreme mantle heterogeneity by the end of the Hadean also coincides with the end of the Late Heavy Bombardment of the inner Solar System. However, as long as it is not firmly established whether this event represents a spike or the final demise of accretion (Hartmann and Berman, 2000), its effect on terrestrial geodynamics cannot be properly understood.

Alternatively, the large variability in the apparent Sm/Nd and Lu/Hf ratios of Early Archean samples may simply reflect a misconstrued primordial isotope composition of Nd and Hf in the Earth. The only strong statement that safely emerges from Fig. 8 is that the geochemically transient state of the Earth lasted for about 1 Gy (Albarède et al., 2000).

For ~ 4 Gy, extraction of continental crust does not, therefore, appear to have depleted the mantle source of the continental protolith (Fig. 8). Island arc rocks and, to an even greater extent, TTGs, are characterized by particularly low $^{176}\text{Lu}/^{177}\text{Hf}$ ratios (Blichert-Toft and Albarède, 2008; Fig. 9) and strong depletions in Nb and Ta (Hoffmann et al., 2011; Kamber et al., 2002). Both types of magmas derive from mafic melts through a second-stage
process and do not represent melts extracted directly from the (ultramafic) mantle. In contrast, both mid-ocean-ridge (MORB) and plateau basalts have \(^{176}\text{Lu}^{177}\text{Hf}\) ratios not very different from the chondritic value (0.033) (Blichert-Toft and Albarède, 1997, 2008; Bouvier et al., 2008), while the \(^{176}\text{Lu}^{177}\text{Hf}\) ratio of the modern depleted upper mantle (0.045 according to Salters and Stracke (2004) and 0.053 according to Workman and Hart (2005)) is estimated to be much higher. Trace element and isotopic evidence (Hofmann, 1997) further indicates that MORB originates in a mantle that went through multiple melt extraction events in the distant past. In addition, MORB extraction visibly is a continuous process, which conflicts with the episodic record of continental crust formation (Albarède, 1998a). A mantle resembling the modern upper (MORB) mantle therefore does not provide a suitable precursor for continents.

The continental protolith hence was extracted without noticeable geochemical fractionation from a part of the mantle whose incompatible element content remained geochemically unchanged for 4 Gyr. We surmise that this undepleted source could be the deep mantle and that it remained largely undepleted simply because melting of the rising plume head transporting the deep mantle material upwards only occurred in the upper mantle. A rising diapir of deep mantle separating at rather shallow depth into a basaltic protolith (the plume head) and a refractory residue merging with the residual upper mantle constituted the first step. The equivalence of greenstone belts with oceanic plateaus, the episodic character of their extraction from the mantle, and the age correspondence with peaks of crustal growth are well established (Condie, 1995). Unfortunately, trace element geochemistry is of little help to support this suggestion: a compilation of 327 samples of oceanic plateaus (from geochemistry is of little help to support this suggestion: a compilation of 327 samples of oceanic plateaus (from http://www.georoc.org/portal.php) gives a mean \(^{176}\text{Lu}^{177}\text{Hf}\) value of 0.027, but with a wide range of variation of 300%, which attests to the complexity of melting conditions in this environment. The second step takes place at subduction zones and involves the melting of thick oceanic plateaus to form the orogenic magmas that will accrete to pre-existing continental crust. The depleted residues could return to the upper mantle either through subduction (Condie, 1998; Rollinson, 1997) or by subsequent delamination of the underplated residues (Arndt and Goldstein, 1988; Plank, 2005; Rudnick and Fountain, 1995). The volume of deep-seated fertile mantle source available for continent formation therefore decreases with time but without experiencing major chemical changes. The strikingly constant Lu/Hf ratio of the continent protolith demonstrates a connection between crust-forming processes and deep-mantle dynamics. This interpretation is consistent with the prevalence of superplume events in crustal growth (Boher et al., 1992; Hawkesworth et al., 2010; Schubert and Sandwell, 1989; Stein and Goldstein, 1996), possibly triggered by mantle avalanches (Stein and Hofmann, 1994), and with the origin of some plateau basalts in ancient primitive mantle (Jackson and Carlson, 2011). There is, in contrast, no large-scale geochemical record of \(\text{\text{f}}\text{ig}_t\) \((T_o)\) \(> 8\) and, hence, no record of direct upper mantle involvement in crustal growth prior to the late Proterozoic (Fig. 2). However incontrovertible the evidence of subduction-related magmatic activity on the present Earth, it seems that this process was not the primary cause of crustal growth during most of geologic history. Oceanic crust consumption at subduction zones and creation at ridge crests are two complementary surface expressions of mantle convection. The rate at which these processes proceed may vary, but there is no hint in the geological record that they repeatedly came to a full stop for protracted periods of time. Crustal growth is forcibly episodic, plate tectonics is not. In other words, the composition and the episodocity of crust formation is related to plume-driven processes, while the main mechanism able to transform oceanic plateaus into continental crust is subduction. In a two-stage process, the first stage is controlled by deep-mantle dynamics and the second stage is controlled by plate tectonics (subduction).

Defining the source of continental crust as the ‘deep mantle’ is nonetheless ambiguous as there is a need to assess how such an entity relates to the lower mantle defined by geophysics as the mantle underlying the 660 km seismic discontinuity. In the Lu–Hf isochron plot of Fig. 10, continental crust and the depleted mantle form an alignment with the bulk silicate Earth. The respective \(^{176}\text{Lu}^{177}\text{Hf}\) ratios of these reservoirs are those of Rudnick and Fountain (1995), Workman and Hart (2005), and Blichert-Toft and Albarède (1997). The mean present-day \(f_{ig}t\) of the crust (−16) was taken from the average value of the Amazon bedload (Vervoort et al., 1999), while the value for the depleted mantle (+14) was taken from the maximum frequency of MORB samples in the GeoRoc database.

How does this interpretation differ from the decades-old paradigm of layered mantle convection and, in particular, how does subduction of lithospheric plates affect the composition of the deep mantle? Ancient fluxes of continental crust recycled into the mantle are poorly constrained. Scholl and von Huene (2009) acknowledged this limitation and assessed that the equivalent of the volume of modern crust may have been returned to the mantle over the last 3 Gyr. The \(^{40}\text{K}^{–}^{40}\text{Ar}\) budget of crust and atmosphere formation clearly is incompatible with such a large volume. Coltice et al. (2000) showed that this volume is inconsistent with the \(^{40}\text{K}^{–}^{40}\text{Ar}\) budget of crust and atmosphere and used the amount of ‘orphaned’ \(^{40}\text{Ar}\) in the atmosphere to bring the upper limit of crust recycled into the mantle over that period down to 25% of the present crust. One reason why fluxes of recycled continental crust are so low is that before sinking into the deep mantle, lithospheric plates are effectively stripped of their mobile elements, either because they are incompatible or because they are labile in the presence of fluids. Deep subduction...
of barren plates (Albarède, 1998b) only negligibly changes the Lu/Hf ratio of the deep mantle, but dilutes incompatible element concentrations by up to a factor of two assuming present-day subduction rates and that all plates reach the lower mantle. If, by extrapolating the modern rate of plate subduction, it is assumed that a volume equivalent to that of the whole mantle has been processed through mid-ocean ridges, the proportion of the mantle depleted by crust formation should be raised from 21 to 40%. This range is to be compared with a mass proportion of 25% for the part of the mantle lying above the 660 km discontinuity, which seems to store plume material prior to eruption (Cao et al., 2011). If the deep mantle has a chondritic Lu/Hf ratio and a primordial Hf concentration, the modern upper mantle, therefore, is almost completely made up of residues of crust extraction. This cannot, however, have been the case for most of Earth’s history, and hence largely accounts for, among other parameters that also play a role, the scarcity of ancient MORB-like magmas (Arndt, 2008).

The fertile mantle, which is the ultimate source of continental crust, therefore has receded downwards through geological time at the pace of crustal growth. Whichever proportion of U, Th, and K is presently hosted by the continental crust was, >3 Ga ago, still largely contained within the upper mantle and its activity substantially higher. Consequently, the temperature gradient in the upper mantle was significantly greater than its modern equivalent. In such a context, the predominant restriction of TTGs to crustal segments older than 1.8 Ga indicates that the geodynamics of the first ~3 Ga of Earth’s history were controlled by hot partial melting of oceanic plateau basalts possibly in subduction-like environments (Condie et al., 2005), with both types of settings experiencing subsequent collisions, such as at Isua (Hiess et al., 2009), and the steady decantation of Mg-rich, buoyant depleted residues into the upper mantle.

6. Conclusions

This study addresses the long-standing and widely debated problem of the origin and evolution of the continental crust through Earth’s history with special emphasis on the Hadean–Archean transition. We have revisited this question through a large new Lu–Hf isotope data set on a global collection of TTG rocks from almost every known craton, together with paired Hf (tracer) and Pb (age) isotopic measurements on single zircons from the same samples. The zircon work was undertaken with the goal of (i) demonstrating that the Hf isotopic compositions of zircons are representative of those of their host rock and, hence, can be used to make inferences about continental growth, and to (ii) either verify or determine the Pb–Pb ages of the samples. We also show that solution and laser-ablation Hf isotopic measurements are in good agreement. We use this data set, together with a large database of previously published Hf isotopic compositions on detrital and magmatic zircons, to show that the time-integrated Lu/Hf ratios recorded in TTGs and the global zircon database have remained essentially unchanged—and approximately similar to the chondritic ratio—over the past 4 Ga. We argue that the narrow range of near-chondritic Lu/Hf supports derivation of continental crust from primitive (chondritic) mantle instead of, as commonly assumed, the depleted upper mantle (MORB-source). We surmise that this primitive reservoir resides in the lower mantle, implying that continental crust is generated from a deep mantle source rather than the upper mantle. In this scenario, continental crust principally formed early on through partial melting at subduction zones of oceanic plates, which in turn formed by shallow melting of primitive mantle material brought from the lower mantle in upwelling plume heads. The depleted plume residues would remain in and merge with the upper mantle after crust extraction.

Acknowledgments

We are grateful to Geoscience Australia, Chris Carson, Olga Turkina, Valery Vetrin, Martin Van Kranendonk, Dave Champion, Minik Rosen, Thomas Naeraa, Jean–François Moyen, Mingguo Zhai, Peng Peng, and Svetlana Lobach-Zhuchenko for generously providing most of the samples analyzed in this study. We further thank Philippe Telouk, Chantal Douchet, Emmanuelle Albalat, Florent Arnaud-Godet, Gilles Montagnac, Bertrand Van De Moortele, Jean-Louis Paquette, Jean-Marc Hénot, Denis Mangin, Marc Chauvel, Wouter Bleeker, Mireille Besararie, Nicole Cates, Oleg Abramov, Craig Manning, Mark Harrison, Charles Knaack, Thomas Williams, Richard Gaschnig, and Jeff Vervoort for help with either technical or analytical matters or field work. JBT and FA acknowledge financial support from the French Programme National de Planétologie of the Institut National des Sciences de l’Univers and Centre National d’Études Spatiales, and from the French Agence Nationale de la Recherche (grants BEGDy – Birth and Evolution of Terrestrial GeoDynamics and M&Ms – Mantle Melting – Measurements, Models, Mechanisms), while SJM acknowledges financial support from the NASA Exobiology Program (grant Exploring the Hadean Earth) and NASA Lunar Science Institute Program (Center for Lunar Origin and Evolution), the National Geographic Society, University of Colorado and the J. William Fulbright Foundation. We thank Matthew Jackson for inspiring discussion and Klaus Mezger and an anonymous reviewer for their helpful comments.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.epsl.2012.05.029.

References

