Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth
E. B. Watson, et al.
Science 308, 841 (2005);
DOI: 10.1126/science.1110873

The following resources related to this article are available online at www.sciencemag.org (this information is current as of December 13, 2006):

Updated information and services, including high-resolution figures, can be found in the online version of this article at:
http://www.sciencemag.org/cgi/content/full/308/5723/841

Supporting Online Material can be found at:
http://www.sciencemag.org/cgi/content/full/308/5723/841/DC1

A list of selected additional articles on the Science Web sites related to this article can be found at:
http://www.sciencemag.org/cgi/content/full/308/5723/841#related-content

This article cites 15 articles, 8 of which can be accessed for free:
http://www.sciencemag.org/cgi/content/full/308/5723/841#otherarticles

This article has been cited by 25 article(s) on the ISI Web of Science.

This article has been cited by 9 articles hosted by HighWire Press; see:
http://www.sciencemag.org/cgi/content/full/308/5723/841#otherarticles

Information about obtaining reprints of this article or about obtaining permission to reproduce this article in whole or in part can be found at:
http://www.sciencemag.org/help/about/permissions.dtl
Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth

E. B. Watson*1 and T. M. Harrison2,3

Ancient zircons from Western Australia’s Jack Hills preserve a record of conditions that prevailed on Earth not long after its formation. Widely considered to have been a uniquely violent period geodynamically, the Hadean Eon [4.5 to 4.0 billion years ago (Ga)] has recently been interpreted by some as far more benign—possibly even characterized by oceans like those of the present day. Knowledge of the crystallization temperatures of the Hadean zircons is key to this debate. A thermometer based on titanium content revealed that these zircons cluster strongly at ~700°C, which is indistinguishable from temperatures of granitoid zircon growth today and strongly suggests a regulated mechanism producing zircon-bearing rocks during the Hadean. The temperatures substantiate the existence of wet, minimum-melting conditions within 200 million years of solar system formation. They further suggest that Earth had settled into a pattern of crust formation, erosion, and sediment recycling as early as 4.35 Ga.

The first 500 million years of Earth evolution, a period known as the Hadean Eon, was the most geodynamically vigorous in our planet’s history. During this time, it is variously speculated that the Earth may have experienced collision with a Mars-sized object (1), formed a global magma ocean (2), grown the first continents (3), and seen the emergence of life (4). It is also entirely possible, and consistent with the geochemical record, that none of these events took place. The fundamental problem is that we have no rock record from this interval to learn about these processes because the oldest firmly dated rock is 4.04 Ga (5). How, then, are we to gain further insights into the formative stages of Earth evolution?

Although no Hadean rocks are yet documented, we are not entirely without a geochemical record of the period between 4.5 and 4.0 Ga. The existence of zircons >4.1 Ga preserved in Early Archean metasediments at Mt. Narryer and Jack Hills, Western Australia, has been known for more than 20 years (6, 7), and recent measurements have begun to glean information from them regarding the nature of the Hadean Earth. For example, Hf isotopic studies suggest the existence of reworked continental crust before 4.1 Ga (8). Oxygen isotope results have been interpreted as indicating that protoliths of ~4.3-Ga magmas formed in the presence of water at the Earth’s surface (9, 10). Xenon isotopic studies of these ancient zircons have permitted an estimate of the initial terrestrial plutonium/uranium ratio, a parameter key to understanding the origin and evolution of the atmosphere (11).

These and other results have challenged the traditional view that continental formation and development of a hydrosphere were frustrated by meteorite bombardment and basalts igneous activity until ~4 Ga. Instead, they suggest a surface environment and petrogenetic processes much more similar to those of the present day. Here, we exploit a newly developed thermometer, based on Ti incorporation into crystallizing zircon, to assess the nature of Hadean magmatism. From these analyses, we conclude that Jack Hills zircons were dominantly sourced from crustal melts that formed at temperatures ranging from those characteristic of wet, minimum melting to vapor absent melting under anatexic conditions.

Titanium content is uniquely suitable as a potential indicator of zircon crystallization temperature. As a tetravalent ion under all relevant geologic conditions, Ti enters the zircon lattice in homovalent replacement of Zr4+ or Si4+. Consequently, Ti uptake does not depend on the availability of other charge-compensating ions. For the TiO2-saturated case (i.e., rutile present in the system), the thermodynamic basis of the thermometer is the simple reaction

$$\text{TiO}_2^{(\text{rutile})} \rightleftharpoons \text{TiO}_2^{(\text{zircon})}$$

for which the equilibrium constant is

$$k_1 = \frac{a_{\text{TiO}_2}^{\text{zircon}}}{a_{\text{TiO}_2}^{\text{rutile}}}$$

where $a_{\text{TiO}_2}^{\text{zircon}}$ is the activity of TiO2 in rutile or zircon as indicated by the superscript. Because rutile is nearly pure TiO2, $a_{\text{TiO}_2}^{\text{rutile}} \approx 1$, so...
where γ is the activity coefficient and X the mole fraction of TiO$_2$ in zircon; ΔG^0_1 is the standard-state free-energy change for reaction 1, R is the gas constant, and T is absolute temperature. Assuming a^{zircon} is constant, the logarithm of the Ti concentration in zircon is expected to be linear in T^{-1}. Confirmation and quantification of this relation would constitute a crystallization thermometer for zircon in the presence of rutile.

The Ti thermometer was calibrated experimentally at 1025° to 1450°C (1 to 2 GPa) and by analysis of natural zircons known to have crystallized at ~580° to 1070°C on the basis of independent geothermometers. We used a piston-cylinder apparatus to grow zircons in the presence of rutile, both from aqueous solution and by crystallization from silicate melt (12). The Ti concentrations in these synthetic zircons were determined by electron microprobe analysis and range between ~100 parts per million (ppm) (1025°C) and ~1300 ppm (1450°C). The natural zircons were separated from five well-characterized rocks: the Bishop Tuff (13); a rutile-bearing migmatite from the Adirondack Mountains (14); a rutile-bearing aluminous schist from the Tauern Window in the Eastern Alps [Stilup Tal (15)]; a rutile-bearing metasomatic vein in a harzburgite nodule from Labait volcano in Tanzania (16); and a rutile-bearing migmatite from a mafic subduction complex exposed at Santa Catalina Island, California (17). Cathodoluminescence (CL) imaging confirmed a simple crystallization history for the Bishop Tuff (BT) zircons; those from the Adirondack migmatite (ADK), the Alpine schist (ST), and the California migmatite (SC) have inherited cores with CL-dark overgrowth rims of varying width believed to have formed at or near peak metamorphic conditions. Zircons in the Labait harzburgite (LB) are large euhedra (up to 500 µm) with CL zoning ranging from concentric to patchy. We determined Ti concentrations in these zircons (or rims) using an ion microprobe (see below) for the ADK, SC, ST, and BT cases and an electron microprobe for the more Ti-rich LB case. Analyses of ADK, SC, ST, and LB zircons are used directly in the calibration because rutile is present in the host rocks. In the BT case, however, the measured Ti contents of the zircons were adjusted upward slightly, in accordance with the subunm TiO$_2$ activity in the system, estimated to be 0.6 from the Ti contents of abundant quartz phenocrysts cocrystallized with the zircons (18) (note that the BT does contain ilmenite). The overall thermometer calibration (Fig. 1) conforms well to prediction (Eq. 2), spans almost 900°C in temperature, and shows little sensitivity to pressure. Application of this thermometer to zircons of unknown crystallization temperature requires simple measurement of Ti content.

Strictly speaking, the Ti-in-zircon thermometer applies to systems containing rutile. Accordingly, the temperatures measured must be regarded as minimum values unless cocrystallization with rutile can be established. This
consideration is important for the Hadean zircons because they are removed from their original surroundings and their coexistence with rutile is generally uncertain. Fortunately, this does not appreciably weaken the constraint on zircon growth temperature provided by Ti content, for the following reasons. In metamorphic systems, a_{TiO_2} ranges from 0.6 in metabasites to ~ 1 in metapelites (19). In igneous systems, a_{TiO_2} is also broadly constrained by existing knowledge of the rutile saturation surface (20). For a wide variety of magmatic melts, the same factors that lead to high activities of ZrO$_2$ (resulting in zircon saturation) (21) also lead to high activities of TiO$_2$. Saturation in zircon and rutile depend weakly on pressure and strongly on temperature and melt composition, where the latter is expressed as a ratio of cation fractions: $FM = (Na^{+} + K^{+} + 2R^{2+})/(Al^{3+} + Si^{4+})$, where $R = Ca$ for the case of zircon (21) and $R = Ca + Fe + Mg$ for rutile (20). If the Hadean zircons are magmatic, as is clearly the case for those with oscillatory zoning (see below), the range of possible host-melt compositions and temperatures is quite restricted—by virtue of the presence of zircon—for plausible levels of dissolved Zr. Broadly speaking, the limitations on melt composition and temperature imposed by the presence of zircon itself restrict a_{TiO_2} to values generally >0.5 (Fig. 2). Only peralkaline melts are exempt from this general reasoning, because of the high solubilities of zircon (22) and the lack of systematic data on rutile solubility.

In summary, for most igneous and metamorphic rocks in existence today, a_{TiO_2} is 0.5 or higher. The host materials of the Hadean zircons cannot be assumed a priori to resemble those typical of more recent times, but their characteristics were governed by the same thermodynamic considerations. Given that a_{TiO_2} generally is ≥ 0.5, the crystallization temperatures of most of these zircons will not be underestimated by more than 50° to 60°C (Fig. 1, inset).

Using an ion microprobe (23), we measured Ti concentrations in 54 Jack Hills concordant zircons ranging in U-Pb age from 4.0 to 4.35 Ga. At least one analysis spot on each zircon was chosen to coincide with the locations where the ages were determined. Calculated temperatures from 69 spots range from 801° to 644°C (696° ± 33°C) (Fig. 3). In most cases, duplicate Ti determinations on single zircons yielded similar temperatures; however, one zircon fragment with CL zoning suggesting a simple magmatic history shows a systematic diminution in crystallization temperature from 778°C near the core to 751°C near the rim (Fig. 4). This pattern is consistent with progressive zircon growth during cooling of the host magma.

The most notable feature of these results is the low and restricted range of temperatures which, taken at face value, implies water-saturated melting conditions. Before we explore this possibility, we first examine two alternative scenarios. First, could the zircon temperature distribution result from cooling of melts derived from the expected high flux of impacting bolides? We rule out this possibility for the following reasons: (i) The melting temperature in the Qz-Ab-Or-H$_2$O system, even in the presence of the 270-bar steam atmosphere resulting from complete evaporation of the ocean (24), exceeds 800°C (25); (ii) the dispersion of the temperature distribution is low (Fig. 3), implying a dominant, regulated melting mechanism (this is especially true if the eight outliers in the distribution at $T > 750°C$ are attributed to an alternative mechanism); and (iii) zircon saturation temperatures calculated for magmas produced by wholesale melting of average crust (26) exceed the average Hadean zircon temperatures we observe. Second, could the Hadean zircon temperature distribution reflect residual liquids that might have fractionated from higher temperature, mafic magmas? We believe this scenario is ruled out by the expectation that late-stage crystallization in a mafic complex would yield appreciably higher average temperatures for zircon formation.

For example, calculated zircon saturation temperatures for late differentiates of the Skaergaard intrusion yield an average temperature of 870°C (27, 28). Our thermometer gave temperatures of 787°C to 806°C for three Skaergaard zircons analyzed in this study (these are probably biased downward slightly by undersaturation of the system in rutile). Moreover, although fractionation of mafic magma can indeed yield felsic melts and intermediate-temperature zircons, this mechanism does not seem to meet the requirement of a regulated mechanism suggested by our data.

Thus, we believe that our crystallization temperatures for the Hadean zircons provide definitive evidence about the state of the early Earth, especially when considered in the context of the inclusion assemblage documented by other workers. Minerals contained within Hadean zircons include quartz, K-feldspar, chloritized biotite, chlorite, amphibole, muscovite, albite, Ca-Al silicate (plagioclase), rutile, apatite, FeOOH, Ni-rich pyrite, thorite (ThO$_2$), and monazite (29, 30). Collectively, these inclusions are characteristic of granitic assemblages or their hydrated and/or oxidized equivalents (29). Until now, the possibility has remained that the inclusion assemblage may represent siliceous, feldspathic material of an-
hydroxyl character that was altered by later exposure of the zircons to crustal metamorphic fluids. The temperatures measured by our Ti thermometer provide strong evidence against this possibility: Even with allowances for subunity TiO₂ activity (Fig. 2), they are simply too low for the zircons to have crystallized from dry siliceous melts (31). The restricted range of temperatures suggests, furthermore, that a highly reproducible set of circumstances removed melt fertility from rocks under prograde conditions consistent with crustal anatectic origin; these temperatures, moreover, are consistent with crustal anatectic origin, and with 20% SiO₂ for which requisite data are available (21) yield a median of 780°C, with more than 80% of all calculated temperatures greater than the mean of our Hadean results (i.e., 696°C). If representative of the Hadean crustal average, then it is highly unlikely that the temperature distribution in Fig. 3 could reflect a Zr concentration of crustal rocks—therefore unlikely that the temperature distribution in Fig. 3 could reflect a Zr concentration of crustal rocks.

23. Water is required to depress the solids to temperatures below ~960°C—the dry solids of rocks of broadly granitic character (34–36).
32. An Octane-Fueled Solid Oxide Fuel Cell
Zhongliang Zhan and Scott A. Barnett*

There are substantial barriers to the introduction of hydrogen fuel cells for transportation, including the high cost of fuel-cell systems, the current lack of a hydrogen infrastructure, and the relatively low fuel efficiency when using hydrogen produced from hydrocarbons. Here, we describe a solid oxide fuel cell that combines a catalyst layer with a conventional anode, allowing internal reforming of iso-octane without coking and yielding stable power densities of 0.3 to 0.6 watts per square centimeter. This approach is potentially the basis of a simple low-cost system that can provide substantially higher fuel efficiency by using excess fuel-cell heat for the endothermic reforming reaction.

Improving fuel efficiency is one of the key reasons, along with reduced pollution, for the adoption of fuel cells for applications such as transportation. Improving efficiency not only reduces fuel consumption but also reduces the associated CO₂ emission. Although fuel cells can achieve efficiencies of 50 to 60%, overall “well-to-wheels” efficiencies are cur-