### Table 1. Compositional traverse across the MA65 garnet.

<table>
<thead>
<tr>
<th>Quant#</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>49</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (mm)</td>
<td>0.00</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.06</td>
<td>0.08</td>
<td>0.10</td>
<td>0.11</td>
<td>0.13</td>
<td>0.15</td>
<td>0.19</td>
<td>0.20</td>
</tr>
<tr>
<td>SiO₂</td>
<td>37.14</td>
<td>36.94</td>
<td>36.93</td>
<td>36.92</td>
<td>36.66</td>
<td>36.49</td>
<td>36.82</td>
<td>36.97</td>
<td>37.20</td>
<td>36.32</td>
<td>36.07</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>21.32</td>
<td>20.62</td>
<td>20.79</td>
<td>20.65</td>
<td>20.82</td>
<td>20.52</td>
<td>20.57</td>
<td>20.48</td>
<td>20.51</td>
<td>20.69</td>
<td>20.82</td>
<td>20.90</td>
</tr>
<tr>
<td>MnO</td>
<td>2.17</td>
<td>2.11</td>
<td>2.17</td>
<td>2.18</td>
<td>2.32</td>
<td>2.24</td>
<td>2.46</td>
<td>2.51</td>
<td>2.58</td>
<td>2.67</td>
<td>2.72</td>
<td>3.01</td>
</tr>
<tr>
<td>MgO</td>
<td>1.66</td>
<td>1.63</td>
<td>1.70</td>
<td>1.68</td>
<td>1.79</td>
<td>1.74</td>
<td>1.59</td>
<td>1.68</td>
<td>1.56</td>
<td>1.55</td>
<td>1.46</td>
<td>1.47</td>
</tr>
<tr>
<td>CaO</td>
<td>3.16</td>
<td>3.32</td>
<td>3.68</td>
<td>3.17</td>
<td>3.17</td>
<td>3.39</td>
<td>3.62</td>
<td>3.60</td>
<td>3.76</td>
<td>3.72</td>
<td>4.01</td>
<td>3.77</td>
</tr>
<tr>
<td>Na₂O</td>
<td>&lt;-</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>FeO</td>
<td>34.89</td>
<td>35.53</td>
<td>34.82</td>
<td>35.32</td>
<td>35.65</td>
<td>35.50</td>
<td>34.62</td>
<td>34.58</td>
<td>34.77</td>
<td>33.78</td>
<td>33.52</td>
<td>34.38</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.05</td>
<td>0.05</td>
<td>0.14</td>
<td>0.01</td>
<td>0.11</td>
<td>0.08</td>
<td>0.02</td>
<td>0.04</td>
<td>0.11</td>
<td>0.02</td>
<td>0.08</td>
<td>0.20</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Total</td>
<td>100.4</td>
<td>100.2</td>
<td>100.3</td>
<td>100.1</td>
<td>101.2</td>
<td>100.2</td>
<td>99.37</td>
<td>99.75</td>
<td>100.3</td>
<td>99.66</td>
<td>98.93</td>
<td>99.83</td>
</tr>
<tr>
<td>Si</td>
<td>2.99</td>
<td>3.00</td>
<td>2.99</td>
<td>3.00</td>
<td>2.99</td>
<td>2.98</td>
<td>2.99</td>
<td>3.00</td>
<td>3.00</td>
<td>3.02</td>
<td>2.98</td>
<td>2.95</td>
</tr>
<tr>
<td>Al</td>
<td>2.02</td>
<td>1.97</td>
<td>1.98</td>
<td>1.97</td>
<td>1.97</td>
<td>1.98</td>
<td>1.97</td>
<td>1.96</td>
<td>1.98</td>
<td>2.01</td>
<td>2.01</td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
<td>0.18</td>
<td>0.18</td>
<td>0.19</td>
<td>0.21</td>
</tr>
<tr>
<td>Mg</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.21</td>
<td>0.21</td>
<td>0.19</td>
<td>0.20</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Ca</td>
<td>0.27</td>
<td>0.29</td>
<td>0.32</td>
<td>0.28</td>
<td>0.27</td>
<td>0.30</td>
<td>0.32</td>
<td>0.31</td>
<td>0.33</td>
<td>0.32</td>
<td>0.35</td>
<td>0.33</td>
</tr>
<tr>
<td>Na</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Fe</td>
<td>2.35</td>
<td>2.41</td>
<td>2.36</td>
<td>2.40</td>
<td>2.39</td>
<td>2.41</td>
<td>2.37</td>
<td>2.35</td>
<td>2.36</td>
<td>2.29</td>
<td>2.30</td>
<td>2.35</td>
</tr>
<tr>
<td>Ti</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Cr</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Total</td>
<td>7.99</td>
<td>8.02</td>
<td>8.01</td>
<td>8.01</td>
<td>8.01</td>
<td>8.03</td>
<td>8.02</td>
<td>8.02</td>
<td>8.02</td>
<td>7.99</td>
<td>8.01</td>
<td>8.04</td>
</tr>
<tr>
<td>FM</td>
<td>0.922</td>
<td>0.925</td>
<td>0.920</td>
<td>0.922</td>
<td>0.918</td>
<td>0.920</td>
<td>0.924</td>
<td>0.920</td>
<td>0.926</td>
<td>0.925</td>
<td>0.928</td>
<td>0.929</td>
</tr>
<tr>
<td>Sps</td>
<td>0.050</td>
<td>0.048</td>
<td>0.049</td>
<td>0.050</td>
<td>0.052</td>
<td>0.050</td>
<td>0.056</td>
<td>0.057</td>
<td>0.058</td>
<td>0.061</td>
<td>0.063</td>
<td>0.068</td>
</tr>
<tr>
<td>Pyp</td>
<td>0.067</td>
<td>0.065</td>
<td>0.068</td>
<td>0.067</td>
<td>0.071</td>
<td>0.069</td>
<td>0.064</td>
<td>0.067</td>
<td>0.062</td>
<td>0.063</td>
<td>0.059</td>
<td>0.058</td>
</tr>
<tr>
<td>Alm</td>
<td>0.791</td>
<td>0.793</td>
<td>0.778</td>
<td>0.792</td>
<td>0.788</td>
<td>0.785</td>
<td>0.776</td>
<td>0.773</td>
<td>0.773</td>
<td>0.768</td>
<td>0.762</td>
<td>0.766</td>
</tr>
<tr>
<td>Grs</td>
<td>0.092</td>
<td>0.095</td>
<td>0.105</td>
<td>0.091</td>
<td>0.090</td>
<td>0.096</td>
<td>0.104</td>
<td>0.103</td>
<td>0.107</td>
<td>0.108</td>
<td>0.117</td>
<td>0.108</td>
</tr>
</tbody>
</table>
Table 1. Cont.

<table>
<thead>
<tr>
<th>Quant#$^a$</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (mm)$^b$</td>
<td>0.22</td>
<td>0.24</td>
<td>0.26</td>
<td>0.28</td>
<td>0.31</td>
<td>0.33</td>
<td>0.35</td>
<td>0.37</td>
<td>0.44</td>
<td>0.48</td>
<td>0.53</td>
<td>0.64</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>36.36</td>
<td>36.99</td>
<td>37.31</td>
<td>36.13</td>
<td>35.84</td>
<td>36.88</td>
<td>37.25</td>
<td>36.94</td>
<td>37.37</td>
<td>36.90</td>
<td>37.02</td>
<td>36.27</td>
</tr>
<tr>
<td>MnO</td>
<td>2.91</td>
<td>3.08</td>
<td>3.30</td>
<td>3.45</td>
<td>3.62</td>
<td>3.71</td>
<td>3.70</td>
<td>3.91</td>
<td>4.15</td>
<td>4.11</td>
<td>4.50</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>1.44</td>
<td>1.42</td>
<td>1.45</td>
<td>1.36</td>
<td>1.36</td>
<td>1.39</td>
<td>1.33</td>
<td>1.29</td>
<td>1.28</td>
<td>1.22</td>
<td>1.36</td>
<td>1.28</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>0.01</td>
<td>-</td>
<td>0.03</td>
<td>0.02</td>
<td>-</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>0.03</td>
<td>-</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>33.97</td>
<td>33.68</td>
<td>33.06</td>
<td>33.30</td>
<td>32.94</td>
<td>32.59</td>
<td>33.29</td>
<td>32.38</td>
<td>32.79</td>
<td>32.22</td>
<td>31.63</td>
<td>32.00</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.07</td>
<td>0.17</td>
<td>0.08</td>
<td>0.09</td>
<td>0.11</td>
<td>0.13</td>
<td>0.13</td>
<td>0.07</td>
<td>0.05</td>
<td>0.05</td>
<td>0.07</td>
<td>0.18</td>
</tr>
<tr>
<td>Cr$_2$O$_3$</td>
<td>0.05</td>
<td>0.03</td>
<td>-</td>
<td>0.03</td>
<td>0.01</td>
<td>0.07</td>
<td>0.04</td>
<td>0.04</td>
<td>0.07</td>
<td>0.01</td>
<td>0.09</td>
<td>0.04</td>
</tr>
<tr>
<td>Total</td>
<td>99.59</td>
<td>100.4</td>
<td>100.1</td>
<td>98.68</td>
<td>97.86</td>
<td>99.77</td>
<td>100.8</td>
<td>99.79</td>
<td>101.1</td>
<td>100.3</td>
<td>99.98</td>
<td>100.1</td>
</tr>
</tbody>
</table>

| Si         | 2.97  | 2.99  | 3.02  | 2.98  | 2.99  | 2.99  | 3.00  | 2.99  | 3.00  | 2.98  | 3.00  | 2.95  |
| Al         | 2.00  | 1.96  | 1.95  | 1.96  | 1.95  | 2.00  | 1.97  | 2.01  | 1.99  | 2.00  | 1.99  | 2.00  |
| Mn         | 0.20  | 0.21  | 0.23  | 0.24  | 0.25  | 0.25  | 0.25  | 0.25  | 0.27  | 0.28  | 0.28  | 0.31  |
| Mg         | 0.18  | 0.17  | 0.18  | 0.17  | 0.17  | 0.17  | 0.16  | 0.16  | 0.15  | 0.15  | 0.16  | 0.15  |
| Ca         | 0.36  | 0.38  | 0.38  | 0.36  | 0.38  | 0.36  | 0.37  | 0.37  | 0.38  | 0.41  | 0.42  | 0.43  |
| Na         | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
| Fe         | 2.32  | 2.28  | 2.24  | 2.30  | 2.30  | 2.21  | 2.24  | 2.20  | 2.20  | 2.18  | 2.14  | 2.18  |
| Ti         | <0.01 | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | 0.01  | <0.01 | <0.01 | <0.01 | <0.01 | 0.01  |
| Cr         | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | 0.01  | <0.01 |
| Total      | 8.03  | 8.01  | 8.01  | 8.03  | 8.03  | 8.00  | 8.01  | 8.00  | 8.01  | 8.01  | 8.00  | 8.04  |

| FM$^d$     | 0.930 | 0.930 | 0.927 | 0.932 | 0.931 | 0.929 | 0.934 | 0.934 | 0.935 | 0.937 | 0.929 | 0.934 |
| Sps        | 0.066 | 0.069 | 0.075 | 0.079 | 0.079 | 0.083 | 0.084 | 0.085 | 0.088 | 0.094 | 0.094 | 0.101 |
| Pyp        | 0.057 | 0.056 | 0.058 | 0.054 | 0.055 | 0.056 | 0.053 | 0.052 | 0.051 | 0.049 | 0.054 | 0.050 |
| Alm        | 0.760 | 0.749 | 0.741 | 0.748 | 0.742 | 0.739 | 0.741 | 0.737 | 0.733 | 0.721 | 0.712 | 0.708 |
| Grs        | 0.117 | 0.125 | 0.125 | 0.119 | 0.124 | 0.122 | 0.122 | 0.126 | 0.128 | 0.136 | 0.140 | 0.141 |

a. Quant#= analysis number. Analysis 11 was used to estimate the P-T conditions.
b. Distance from the garnet rim.
c. "-" analyzed but not detected.
d. FM= Fe/(Fe+Mg), Sps= spessartine, Pyp= pyrope, Alm= almandine, Grs= grossular.
**Table 2.** Compositions of biotite grains in sample MA65.

<table>
<thead>
<tr>
<th>Quant#&lt;sup&gt;a&lt;/sup&gt;</th>
<th>3</th>
<th>4</th>
<th>7</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>X(mm)&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1.71</td>
<td>1.73</td>
<td>1.78</td>
<td>1.81</td>
<td>1.81</td>
</tr>
<tr>
<td>SiO&lt;sub&gt;2&lt;/sub&gt;</td>
<td>33.98</td>
<td>35.76</td>
<td>35.66</td>
<td>34.21</td>
<td>36.62</td>
</tr>
<tr>
<td>Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;</td>
<td>18.79</td>
<td>18.50</td>
<td>18.74</td>
<td>20.26</td>
<td>18.74</td>
</tr>
<tr>
<td>MnO</td>
<td>0.06</td>
<td>0.02</td>
<td>0.09</td>
<td>0.11</td>
<td>0.07</td>
</tr>
<tr>
<td>MgO</td>
<td>7.29</td>
<td>7.90</td>
<td>7.90</td>
<td>7.26</td>
<td>8.58</td>
</tr>
<tr>
<td>CaO</td>
<td>0.05</td>
<td>0.06</td>
<td>0.13</td>
<td>0.15</td>
<td>0.23</td>
</tr>
<tr>
<td>Na&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>0.13</td>
<td>0.18</td>
<td>0.20</td>
<td>0.22</td>
<td>0.16</td>
</tr>
<tr>
<td>K2O</td>
<td>9.27</td>
<td>8.78</td>
<td>9.23</td>
<td>7.26</td>
<td>8.75</td>
</tr>
<tr>
<td>FeO</td>
<td>21.06</td>
<td>21.17</td>
<td>21.05</td>
<td>21.25</td>
<td>21.30</td>
</tr>
<tr>
<td>TiO&lt;sub&gt;2&lt;/sub&gt;</td>
<td>1.62</td>
<td>1.62</td>
<td>1.36</td>
<td>1.47</td>
<td>1.51</td>
</tr>
<tr>
<td>Cr&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;</td>
<td>-c</td>
<td>-</td>
<td>0.01</td>
<td>-</td>
<td>0.05</td>
</tr>
<tr>
<td>Total</td>
<td>92.26</td>
<td>94.00</td>
<td>94.37</td>
<td>92.19</td>
<td>96.01</td>
</tr>
</tbody>
</table>

| Si                | 5.41  | 5.54  | 5.52  | 5.37  | 5.54  |
| Al                | 3.52  | 3.38  | 3.42  | 3.75  | 3.34  |
| Mn                | 0.01  | <0.01 | 0.01  | 0.02  | 0.01  |
| Mg                | 1.73  | 1.82  | 1.82  | 1.70  | 1.94  |
| Ca                | 0.01  | 0.01  | 0.02  | 0.03  | 0.04  |
| Na                | 0.04  | 0.06  | 0.06  | 0.07  | 0.05  |
| K                 | 1.88  | 1.74  | 1.82  | 1.45  | 1.69  |
| Fe                | 2.80  | 2.74  | 2.72  | 2.79  | 2.70  |
| Ti                | 0.19  | 0.19  | 0.16  | 0.17  | 0.17  |
| Cr                | <0.01 | <0.01 | <0.01 | <0.01 | 0.01  |
| Total             | 15.60 | 15.48 | 15.56 | 15.34 | 15.48 |

| FM<sup>d</sup>    | 0.62  | 0.60  | 0.60  | 0.62  | 0.58  |

---

* a. Quant# = analysis number. Analyses 5 and 6 were used to estimate the P-T conditions.
  b. Distance from the garnet rim.
  c. "-" analyzed but not detected.
  d. FM = Fe/(Fe+Mg).
Table 3. Compositions of muscovite grains in sample MA65.

<table>
<thead>
<tr>
<th>Quant#a</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (mm)b</td>
<td>1.49</td>
<td>1.54</td>
<td>1.60</td>
<td>1.71</td>
</tr>
<tr>
<td>SiO₂</td>
<td>46.60</td>
<td>45.35</td>
<td>44.91</td>
<td>45.15</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>34.43</td>
<td>34.50</td>
<td>33.63</td>
<td>33.92</td>
</tr>
<tr>
<td>MnO</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>MgO</td>
<td>0.89</td>
<td>0.88</td>
<td>0.56</td>
<td>0.72</td>
</tr>
<tr>
<td>CaO</td>
<td>0.02</td>
<td>-c</td>
<td>0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.76</td>
<td>0.76</td>
<td>0.73</td>
<td>0.80</td>
</tr>
<tr>
<td>K₂O</td>
<td>9.89</td>
<td>10.13</td>
<td>9.53</td>
<td>9.52</td>
</tr>
<tr>
<td>FeO</td>
<td>1.89</td>
<td>1.85</td>
<td>1.17</td>
<td>1.56</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.07</td>
<td>0.10</td>
<td>0.26</td>
<td>0.20</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>-</td>
<td>-</td>
<td>0.03</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>94.60</td>
<td>93.63</td>
<td>90.86</td>
<td>91.93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>6.24</td>
<td>6.16</td>
<td>6.24</td>
<td>6.21</td>
</tr>
<tr>
<td>Al</td>
<td>5.44</td>
<td>5.52</td>
<td>5.51</td>
<td>5.50</td>
</tr>
<tr>
<td>Mn</td>
<td>0.01</td>
<td>0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Mg</td>
<td>0.18</td>
<td>0.18</td>
<td>0.12</td>
<td>0.15</td>
</tr>
<tr>
<td>Ca</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Na</td>
<td>0.20</td>
<td>0.20</td>
<td>0.20</td>
<td>0.21</td>
</tr>
<tr>
<td>K</td>
<td>1.69</td>
<td>1.76</td>
<td>1.69</td>
<td>1.67</td>
</tr>
<tr>
<td>Fe</td>
<td>0.21</td>
<td>0.21</td>
<td>0.14</td>
<td>0.18</td>
</tr>
<tr>
<td>Ti</td>
<td>0.01</td>
<td>0.01</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Cr</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Total</td>
<td>13.97</td>
<td>14.05</td>
<td>13.92</td>
<td>13.96</td>
</tr>
</tbody>
</table>

a. Quant# = analysis number. Analyses 1 and 3 were used to estimate the P-T conditions.
b. Distance from the garnet rim.
c. "-" analyzed but not detected.
<table>
<thead>
<tr>
<th>Quant#&lt;sup&gt;a&lt;/sup&gt;</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (mm)&lt;sup&gt;b&lt;/sup&gt;</td>
<td>1.17</td>
<td>1.25</td>
<td>0.96</td>
<td>3.64</td>
<td>3.65</td>
<td>3.77</td>
<td>3.77</td>
<td>3.80</td>
<td>3.78</td>
</tr>
<tr>
<td>SiO&lt;sub&gt;2&lt;/sub&gt;</td>
<td>65.62</td>
<td>63.13</td>
<td>62.99</td>
<td>64.11</td>
<td>64.53</td>
<td>65.05</td>
<td>64.95</td>
<td>64.35</td>
<td>64.84</td>
</tr>
<tr>
<td>Al&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>22.69</td>
<td>22.95</td>
<td>23.38</td>
<td>22.08</td>
<td>22.13</td>
<td>22.68</td>
<td>22.69</td>
<td>22.91</td>
<td>22.81</td>
</tr>
<tr>
<td>MnO</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>0.04</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>0.12</td>
<td>0.08</td>
<td>1.37</td>
<td>0.06</td>
<td>0.06</td>
<td>0.08</td>
<td>0.10</td>
<td>0.09</td>
<td>0.13</td>
</tr>
<tr>
<td>FeO</td>
<td>0.08</td>
<td>-</td>
<td>0.17</td>
<td>0.18</td>
<td>0.09</td>
<td>0.05</td>
<td>0.09</td>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>TiO&lt;sub&gt;2&lt;/sub&gt;</td>
<td>0.01</td>
<td>-</td>
<td>0.10</td>
<td>-</td>
<td>-</td>
<td>0.04</td>
<td>0.07</td>
<td>0.03</td>
<td>0.02</td>
</tr>
<tr>
<td>Cr&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;</td>
<td>-</td>
<td>0.04</td>
<td>0.04</td>
<td>-</td>
<td>0.03</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>100.9</td>
<td>98.62</td>
<td>100.4</td>
<td>98.78</td>
<td>99.10</td>
<td>100.1</td>
<td>100.4</td>
<td>100.3</td>
<td>100.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>2.86</th>
<th>2.82</th>
<th>2.79</th>
<th>2.85</th>
<th>2.86</th>
<th>2.85</th>
<th>2.84</th>
<th>2.83</th>
<th>2.84</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Al</td>
<td>1.16</td>
<td>1.21</td>
<td>1.22</td>
<td>1.16</td>
<td>1.16</td>
<td>1.17</td>
<td>1.17</td>
<td>1.19</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>Mn</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td></td>
<td>Ca</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Na</td>
<td>0.77</td>
<td>0.79</td>
<td>0.79</td>
<td>0.79</td>
<td>0.78</td>
<td>0.77</td>
<td>0.79</td>
<td>0.79</td>
<td>0.81</td>
</tr>
<tr>
<td></td>
<td>K</td>
<td>0.01</td>
<td>&lt;0.01</td>
<td>0.08</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>Fe</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td></td>
<td>Ti</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td></td>
<td>Cr</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>4.95</td>
<td>4.98</td>
<td>5.03</td>
<td>4.97</td>
<td>4.97</td>
<td>4.95</td>
<td>4.97</td>
<td>4.97</td>
<td>4.99</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ab&lt;sup&gt;d&lt;/sup&gt;</th>
<th>0.83</th>
<th>0.83</th>
<th>0.78</th>
<th>0.84</th>
<th>0.83</th>
<th>0.83</th>
<th>0.84</th>
<th>0.84</th>
<th>0.84</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>An</td>
<td>0.16</td>
<td>0.16</td>
<td>0.15</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>Or</td>
<td>0.01</td>
<td>&lt;0.01</td>
<td>0.08</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

---

a. Quant#= analysis number. Analyses 8 and 9 were used to estimate the P-T conditions.
b. Distance from the garnet rim.
c. "-" analyzed but not detected.
d. Ab= albite, An= anorthite, Or= orthoclase.